11,200 research outputs found

    Discovering Organizational Correlations from Twitter

    Full text link
    Organizational relationships are usually very complex in real life. It is difficult or impossible to directly measure such correlations among different organizations, because important information is usually not publicly available (e.g., the correlations of terrorist organizations). Nowadays, an increasing amount of organizational information can be posted online by individuals and spread instantly through Twitter. Such information can be crucial for detecting organizational correlations. In this paper, we study the problem of discovering correlations among organizations from Twitter. Mining organizational correlations is a very challenging task due to the following reasons: a) Data in Twitter occurs as large volumes of mixed information. The most relevant information about organizations is often buried. Thus, the organizational correlations can be scattered in multiple places, represented by different forms; b) Making use of information from Twitter collectively and judiciously is difficult because of the multiple representations of organizational correlations that are extracted. In order to address these issues, we propose multi-CG (multiple Correlation Graphs based model), an unsupervised framework that can learn a consensus of correlations among organizations based on multiple representations extracted from Twitter, which is more accurate and robust than correlations based on a single representation. Empirical study shows that the consensus graph extracted from Twitter can capture the organizational correlations effectively.Comment: 11 pages, 4 figure

    Graphs in machine learning: an introduction

    Full text link
    Graphs are commonly used to characterise interactions between objects of interest. Because they are based on a straightforward formalism, they are used in many scientific fields from computer science to historical sciences. In this paper, we give an introduction to some methods relying on graphs for learning. This includes both unsupervised and supervised methods. Unsupervised learning algorithms usually aim at visualising graphs in latent spaces and/or clustering the nodes. Both focus on extracting knowledge from graph topologies. While most existing techniques are only applicable to static graphs, where edges do not evolve through time, recent developments have shown that they could be extended to deal with evolving networks. In a supervised context, one generally aims at inferring labels or numerical values attached to nodes using both the graph and, when they are available, node characteristics. Balancing the two sources of information can be challenging, especially as they can disagree locally or globally. In both contexts, supervised and un-supervised, data can be relational (augmented with one or several global graphs) as described above, or graph valued. In this latter case, each object of interest is given as a full graph (possibly completed by other characteristics). In this context, natural tasks include graph clustering (as in producing clusters of graphs rather than clusters of nodes in a single graph), graph classification, etc. 1 Real networks One of the first practical studies on graphs can be dated back to the original work of Moreno [51] in the 30s. Since then, there has been a growing interest in graph analysis associated with strong developments in the modelling and the processing of these data. Graphs are now used in many scientific fields. In Biology [54, 2, 7], for instance, metabolic networks can describe pathways of biochemical reactions [41], while in social sciences networks are used to represent relation ties between actors [66, 56, 36, 34]. Other examples include powergrids [71] and the web [75]. Recently, networks have also been considered in other areas such as geography [22] and history [59, 39]. In machine learning, networks are seen as powerful tools to model problems in order to extract information from data and for prediction purposes. This is the object of this paper. For more complete surveys, we refer to [28, 62, 49, 45]. In this section, we introduce notations and highlight properties shared by most real networks. In Section 2, we then consider methods aiming at extracting information from a unique network. We will particularly focus on clustering methods where the goal is to find clusters of vertices. Finally, in Section 3, techniques that take a series of networks into account, where each network i

    Multiple Scale-Free Structures in Complex Ad-Hoc Networks

    Full text link
    This paper develops a framework for analyzing and designing dynamic networks comprising different classes of nodes that coexist and interact in one shared environment. We consider {\em ad hoc} (i.e., nodes can leave the network unannounced, and no node has any global knowledge about the class identities of other nodes) {\em preferentially grown networks}, where different classes of nodes are characterized by different sets of local parameters used in the stochastic dynamics that all nodes in the network execute. We show that multiple scale-free structures, one within each class of nodes, and with tunable power-law exponents (as determined by the sets of parameters characterizing each class) emerge naturally in our model. Moreover, the coexistence of the scale-free structures of the different classes of nodes can be captured by succinct phase diagrams, which show a rich set of structures, including stable regions where different classes coexist in heavy-tailed and light-tailed states, and sharp phase transitions. Finally, we show how the dynamics formulated in this paper will serve as an essential part of {\em ad-hoc networking protocols}, which can lead to the formation of robust and efficiently searchable networks (including, the well-known Peer-To-Peer (P2P) networks) even under very dynamic conditions

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks

    Big networks : a survey

    Get PDF
    A network is a typical expressive form of representing complex systems in terms of vertices and links, in which the pattern of interactions amongst components of the network is intricate. The network can be static that does not change over time or dynamic that evolves through time. The complication of network analysis is different under the new circumstance of network size explosive increasing. In this paper, we introduce a new network science concept called a big network. A big networks is generally in large-scale with a complicated and higher-order inner structure. This paper proposes a guideline framework that gives an insight into the major topics in the area of network science from the viewpoint of a big network. We first introduce the structural characteristics of big networks from three levels, which are micro-level, meso-level, and macro-level. We then discuss some state-of-the-art advanced topics of big network analysis. Big network models and related approaches, including ranking methods, partition approaches, as well as network embedding algorithms are systematically introduced. Some typical applications in big networks are then reviewed, such as community detection, link prediction, recommendation, etc. Moreover, we also pinpoint some critical open issues that need to be investigated further. © 2020 Elsevier Inc
    corecore