720 research outputs found

    Triaging informative cis-regulatory elements for the combinatorial control of temporal gene expression during Plasmodium falciparum intraerythrocytic development

    Get PDF
    Background: Over 2700 genes are subject to stage-specific regulation during the intraerythrocytic development of the human malaria parasite Plasmodium falciparum. Bioinformatic analyses have identified a large number of over-represented motifs in the 5′ flanking regions of these genes that may act as cis-acting factors in the promoter-based control of temporal expression. Triaging these lists to provide candidates most likely to play a role in regulating temporal expression is challenging, but important if we are to effectively design in vitro studies to validate this role. Methods: We report here the application of a repeated search of variations of 5′ flanking sequences from P. falciparum using the Finding Informative Regulatory Elements (FIRE) algorithm. Results: Our approach repeatedly found a short-list of high scoring DNA motifs, for which cognate specific transcription factors were available, that appear to be typically associated with upregulation of mRNA accumulation during the first half of intraerythrocytic development. Conclusions: We propose these cis-trans interactions may provide a combinatorial promoter-based control of gene expression to complement more global mechanisms of gene regulation that can account for temporal control during the second half of intraerythrocytic development

    RNA-Seq analysis of splicing in Plasmodium falciparum uncovers new splice junctions, alternative splicing and splicing of antisense transcripts.

    Get PDF
    Over 50% of genes in Plasmodium falciparum, the deadliest human malaria parasite, contain predicted introns, yet experimental characterization of splicing in this organism remains incomplete. We present here a transcriptome-wide characterization of intraerythrocytic splicing events, as captured by RNA-Seq data from four timepoints of a single highly synchronous culture. Gene model-independent analysis of these data in conjunction with publically available RNA-Seq data with HMMSplicer, an in-house developed splice site detection algorithm, revealed a total of 977 new 5' GU-AG 3' and 5 new 5' GC-AG 3' junctions absent from gene models and ESTs (11% increase to the current annotation). In addition, 310 alternative splicing events were detected in 254 (4.5%) genes, most of which truncate open reading frames. Splicing events antisense to gene models were also detected, revealing complex transcriptional arrangements within the parasite's transcriptome. Interestingly, antisense introns overlap sense introns more than would be expected by chance, perhaps indicating a functional relationship between overlapping transcripts or an inherent organizational property of the transcriptome. Independent experimental validation confirmed over 30 new antisense and alternative junctions. Thus, this largest assemblage of new and alternative splicing events to date in Plasmodium falciparum provides a more precise, dynamic view of the parasite's transcriptome

    Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes

    Get PDF
    Background Fusarium graminearum (Fg), a major fungal pathogen of cultivated cereals, is responsible for billions of dollars in agriculture losses. There is a growing interest in understanding the transcriptional regulation of this organism, especially the regulation of genes underlying its pathogenicity. The generation of whole genome sequence assemblies for Fg and three closely related Fusarium species provides a unique opportunity for such a study. Results Applying comparative genomics approaches, we developed a computational pipeline to systematically discover evolutionarily conserved regulatory motifs in the promoter, downstream and the intronic regions of Fg genes, based on the multiple alignments of sequenced Fusarium genomes. Using this method, we discovered 73 candidate regulatory motifs in the promoter regions. Nearly 30% of these motifs are highly enriched in promoter regions of Fg genes that are associated with a specific functional category. Through comparison to Saccharomyces cerevisiae (Sc) and Schizosaccharomyces pombe (Sp), we observed conservation of transcription factors (TFs), their binding sites and the target genes regulated by these TFs related to pathways known to respond to stress conditions or phosphate metabolism. In addition, this study revealed 69 and 39 conserved motifs in the downstream regions and the intronic regions, respectively, of Fg genes. The top intronic motif is the splice donor site. For the downstream regions, we noticed an intriguing absence of the mammalian and Sc poly-adenylation signals among the list of conserved motifs. Conclusion This study provides the first comprehensive list of candidate regulatory motifs in Fg, and underscores the power of comparative genomics in revealing functional elements among related genomes. The conservation of regulatory pathways among the Fusarium genomes and the two yeast species reveals their functional significance, and provides new insights in their evolutionary importance among Ascomycete fungi

    Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

    Get PDF
    The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum

    BLSSpeller : exhaustive comparative discovery of conserved cis-regulatory elements

    Get PDF
    Motivation: The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. Results: We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O. sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z. mays

    Comparative genomics of small RNA regulatory pathway components in vector mosquitoes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Small RNA regulatory pathways (SRRPs) control key aspects of development and anti-viral defense in metazoans. Members of the Argonaute family of catalytic enzymes degrade target RNAs in each of these pathways. SRRPs include the microRNA, small interfering RNA (siRNA) and PIWI-type gene silencing pathways. Mosquitoes generate viral siRNAs when infected with RNA arboviruses. However, in some mosquitoes, arboviruses survive antiviral RNA interference (RNAi) and are transmitted via mosquito bite to a subsequent host. Increased knowledge of these pathways and functional components should increase understanding of the limitations of anti-viral defense in vector mosquitoes. To do this, we compared the genomic structure of SRRP components across three mosquito species and three major small RNA pathways.</p> <p>Results</p> <p>The <it>Ae. aegypti, An. gambiae </it>and <it>Cx. pipiens </it>genomes encode putative orthologs for all major components of the miRNA, siRNA, and piRNA pathways. <it>Ae. aegypti </it>and <it>Cx. pipiens </it>have undergone expansion of Argonaute and PIWI subfamily genes. Phylogenetic analyses were performed for these protein families. In addition, sequence pattern recognition algorithms MEME, MDScan and Weeder were used to identify upstream regulatory motifs for all SRRP components. Statistical analyses confirmed enrichment of species-specific and pathway-specific cis-elements over the rest of the genome.</p> <p>Conclusion</p> <p>Analysis of Argonaute and PIWI subfamily genes suggests that the small regulatory RNA pathways of the major arbovirus vectors, <it>Ae. aegypti and Cx. pipiens</it>, are evolving faster than those of the malaria vector <it>An. gambiae </it>and <it>D. melanogaster</it>. Further, protein and genomic features suggest functional differences between subclasses of PIWI proteins and provide a basis for future analyses. Common UCR elements among SRRP components indicate that 1) key components from the miRNA, siRNA, and piRNA pathways contain NF-kappaB-related and Broad complex transcription factor binding sites, 2) purifying selection has occurred to maintain common pathway-specific elements across mosquito species and 3) species-specific differences in upstream elements suggest that there may be differences in regulatory control among mosquito species. Implications for arbovirus vector competence in mosquitoes are discussed.</p

    Core genome components and lineage specific expansions in malaria parasites Plasmodium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The increasing resistance of <it>Plasmodium,</it> the malaria parasites, to multiple commonly used drugs has underscored the urgent need to develop effective antimalarial drugs and vaccines. The new direction of genomics-driven target discovery has become possible with the completion of parasite genome sequencing, which can lead us to a better understanding of how the parasites develop the genetic variability that is associated with their response to environmental challenges and other adaptive phenotypes.</p> <p>Results</p> <p>We present the results of a comprehensive analysis of the genomes of six <it>Plasmodium</it> species, including two species that infect humans, one that infects monkeys, and three that infect rodents. The core genome shared by all six species is composed of 3,351 genes, which make up about 22%-65% of the genome repertoire. These components play important roles in fundamental functions as well as in parasite-specific activities. We further investigated the distribution and features of genes that have been expanded in specific Plasmodium lineage(s). Abundant duplicate genes are present in the six species, with 5%-9% of the whole genomes composed lineage specific radiations. The majority of these gene families are hypothetical proteins with unknown functions; a few may have predicted roles such as antigenic variation.</p> <p>Conclusions</p> <p>The core genome components in the malaria parasites have functions ranging from fundamental biological processes to roles in the complex networks that sustain the parasite-specific lifestyles appropriate to different hosts. They represent the minimum requirement to maintain a successful life cycle that spans vertebrate hosts and mosquito vectors. Lineage specific expansions (LSEs) have given rise to abundant gene families in <it>Plasmodium.</it> Although the functions of most families remain unknown, these LSEs could reveal components in parasite networks that, by their enhanced genetic variability, can contribute to pathogenesis, virulence, responses to environmental challenges, or interesting phenotypes.</p

    Comparative Analysis of Similarity Check Mechanism for Motif Extraction

    Get PDF
    In this work, a comparative analysis of the similarity check mechanism used in the most effective algorithm for mining simple motifs GEMS (Gene Enrichment Motif Searching) and that used in a popular multi-objective genetic algorithm, MOGAMOD (Multi-Objective Genetic Algorithm for Motif Discovery) was done. In our previous work, we had reported the implementation of GEMS on suffix tree –Suffix Tree Gene Enrichment Motif Searching (STGEMS) and shown the linear asymptotic runtime achieved. Here, we attempt to empirically proof the high sensitivity of the resulting algorithm, STGEMS in mining motifs from challenging sequences like we have in Plasmodium falciparum. The results obtained validates the high sensitivity of the similarity check mechanism employed in GEMS and also shows that a careful deployment of this mechanism in the multi-objective genetic algorithm, improved the sensiti
    corecore