24,913 research outputs found

    Discovering Exclusive Patterns in Frequent Sequences

    Get PDF
    This paper presents a new concept for pattern discovery in frequent sequences with potentially interesting applications. Based on data mining, the approach aims to discover exclusive sequential patterns (ESP) by checking the relative exclusion of patterns across data sequences. ESP mining pursues the post-processing of sequential patterns and augments existing work on structural relations patterns mining. A three phase ESP mining method is proposed together with component algorithms, where a running worked example explains the process. Experiments are performed on real-world and synthetic datasets which showcase the results of ESP mining and demonstrate its effectiveness, illuminating the theories developed. An outline case study in workflow modelling gives some insight into future applicability

    Sequential Patterns Post-processing for Structural Relation Patterns Mining

    Get PDF
    Sequential patterns mining is an important data-mining technique used to identify frequently observed sequential occurrence of items across ordered transactions over time. It has been extensively studied in the literature, and there exists a diversity of algorithms. However, more complex structural patterns are often hidden behind sequences. This article begins with the introduction of a model for the representation of sequential patterns—Sequential Patterns Graph—which motivates the search for new structural relation patterns. An integrative framework for the discovery of these patterns–Postsequential Patterns Mining–is then described which underpins the postprocessing of sequential patterns. A corresponding data-mining method based on sequential patterns postprocessing is proposed and shown to be effective in the search for concurrent patterns. From experiments conducted on three component algorithms, it is demonstrated that sequential patterns-based concurrent patterns mining provides an efficient method for structural knowledge discover

    Graph-based Modelling of Concurrent Sequential Patterns

    Get PDF
    Structural relation patterns have been introduced recently to extend the search for complex patterns often hidden behind large sequences of data. This has motivated a novel approach to sequential patterns post-processing and a corresponding data mining method was proposed for Concurrent Sequential Patterns (ConSP). This article refines the approach in the context of ConSP modelling, where a companion graph-based model is devised as an extension of previous work. Two new modelling methods are presented here together with a construction algorithm, to complete the transformation of concurrent sequential patterns to a ConSP-Graph representation. Customer orders data is used to demonstrate the effectiveness of ConSP mining while synthetic sample data highlights the strength of the modelling technique, illuminating the theories developed

    Constraining the Search Space in Temporal Pattern Mining

    Get PDF
    Agents in dynamic environments have to deal with complex situations including various temporal interrelations of actions and events. Discovering frequent patterns in such scenes can be useful in order to create prediction rules which can be used to predict future activities or situations. We present the algorithm MiTemP which learns frequent patterns based on a time intervalbased relational representation. Additionally the problem has also been transfered to a pure relational association rule mining task which can be handled by WARMR. The two approaches are compared in a number of experiments. The experiments show the advantage of avoiding the creation of impossible or redundant patterns with MiTemP. While less patterns have to be explored on average with MiTemP more frequent patterns are found at an earlier refinement level

    Applications of concurrent access patterns in web usage mining

    Get PDF
    This paper builds on the original data mining and modelling research which has proposed the discovery of novel structural relation patterns, applying the approach in web usage mining. The focus of attention here is on concurrent access patterns (CAP), where an overarching framework illuminates the methodology for web access patterns post-processing. Data pre-processing, pattern discovery and patterns analysis all proceed in association with access patterns mining, CAP mining and CAP modelling. Pruning and selection of access pat-terns takes place as necessary, allowing further CAP mining and modelling to be pursued in the search for the most interesting concurrent access patterns. It is shown that higher level CAPs can be modelled in a way which brings greater structure to bear on the process of knowledge discovery. Experiments with real-world datasets highlight the applicability of the approach in web navigation
    • …
    corecore