987 research outputs found

    Multi-objective optimization based network control principles for identifying personalized drug targets with cancer

    Full text link
    It is a big challenge to develop efficient models for identifying personalized drug targets (PDTs) from high-dimensional personalized genomic profile of individual patients. Recent structural network control principles have introduced a new approach to discover PDTs by selecting an optimal set of driver genes in personalized gene interaction network (PGIN). However, most of current methods only focus on controlling the system through a minimum driver-node set and ignore the existence of multiple candidate driver-node sets for therapeutic drug target identification in PGIN. Therefore, this paper proposed multi-objective optimization-based structural network control principles (MONCP) by considering minimum driver nodes and maximum prior-known drug-target information. To solve MONCP, a discrete multi-objective optimization problem is formulated with many constrained variables, and a novel evolutionary optimization model called LSCV-MCEA was developed by adapting a multi-tasking framework and a rankings-based fitness function method. With genomics data of patients with breast or lung cancer from The Cancer Genome Atlas database, the effectiveness of LSCV-MCEA was validated. The experimental results indicated that compared with other advanced methods, LSCV-MCEA can more effectively identify PDTs with the highest Area Under the Curve score for predicting clinically annotated combinatorial drugs. Meanwhile, LSCV-MCEA can more effectively solve MONCP than other evolutionary optimization methods in terms of algorithm convergence and diversity. Particularly, LSCV-MCEA can efficiently detect disease signals for individual patients with BRCA cancer. The study results show that multi-objective optimization can solve structural network control principles effectively and offer a new perspective for understanding tumor heterogeneity in cancer precision medicine.Comment: 15 pages, 8 figures; This work has been submitted to IEEE Transactions on Evolutionary Computatio

    Enhancing the predictive performance of ensemble models through novel multi-objective strategies: evidence from credit risk and business model innovation survey data

    Get PDF
    This paper proposes novel multi-objective optimization strategies to develop a weighted ensemble model. The comparison of the performance of the proposed strategies against simulated data suggests that the multi-objective strategy based on joint entropy is superior to other proposed strategies. For the application, generalization, and practical implications of the proposed approaches, we implemented the model on two real datasets related to the prediction of credit risk default and the adoption of the innovative business model by firms. The scope of this paper can be extended in ordering the solutions of the proposed multi- objective strategies and can be generalized for other similar predictive task

    GALAXY: A new hybrid MOEA for the Optimal Design of Water Distribution Systems

    Get PDF
    This is the final version of the article. Available from American Geophysical Union via the DOI in this record.The first author would like to appreciate the financial support given by both the University of Exeter and the China Scholarship Council (CSC) toward the PhD research. We also appreciate the three anonymous reviewers, who help improve the quality of this paper substantially. The source code of the latest versions of NSGA-II and ε-MOEA can be downloaded from the official website of Kanpur Genetic Algorithms Laboratory via http://www.iitk.ac.in/kangal/codes.shtml. The description of each benchmark problem used in this paper, including the input file of EPANET and the associated best-known Pareto front, can be accessed from the following link to the Centre for Water Systems (http://tinyurl.com/cwsbenchmarks/). GALAXY can be accessed via http://tinyurl.com/cws-galaxy

    Multiobjective Optimization of Non-Smooth PDE-Constrained Problems

    Full text link
    Multiobjective optimization plays an increasingly important role in modern applications, where several criteria are often of equal importance. The task in multiobjective optimization and multiobjective optimal control is therefore to compute the set of optimal compromises (the Pareto set) between the conflicting objectives. The advances in algorithms and the increasing interest in Pareto-optimal solutions have led to a wide range of new applications related to optimal and feedback control - potentially with non-smoothness both on the level of the objectives or in the system dynamics. This results in new challenges such as dealing with expensive models (e.g., governed by partial differential equations (PDEs)) and developing dedicated algorithms handling the non-smoothness. Since in contrast to single-objective optimization, the Pareto set generally consists of an infinite number of solutions, the computational effort can quickly become challenging, which is particularly problematic when the objectives are costly to evaluate or when a solution has to be presented very quickly. This article gives an overview of recent developments in the field of multiobjective optimization of non-smooth PDE-constrained problems. In particular we report on the advances achieved within Project 2 "Multiobjective Optimization of Non-Smooth PDE-Constrained Problems - Switches, State Constraints and Model Order Reduction" of the DFG Priority Programm 1962 "Non-smooth and Complementarity-based Distributed Parameter Systems: Simulation and Hierarchical Optimization"
    corecore