2,018 research outputs found

    Discovering Organizational Correlations from Twitter

    Full text link
    Organizational relationships are usually very complex in real life. It is difficult or impossible to directly measure such correlations among different organizations, because important information is usually not publicly available (e.g., the correlations of terrorist organizations). Nowadays, an increasing amount of organizational information can be posted online by individuals and spread instantly through Twitter. Such information can be crucial for detecting organizational correlations. In this paper, we study the problem of discovering correlations among organizations from Twitter. Mining organizational correlations is a very challenging task due to the following reasons: a) Data in Twitter occurs as large volumes of mixed information. The most relevant information about organizations is often buried. Thus, the organizational correlations can be scattered in multiple places, represented by different forms; b) Making use of information from Twitter collectively and judiciously is difficult because of the multiple representations of organizational correlations that are extracted. In order to address these issues, we propose multi-CG (multiple Correlation Graphs based model), an unsupervised framework that can learn a consensus of correlations among organizations based on multiple representations extracted from Twitter, which is more accurate and robust than correlations based on a single representation. Empirical study shows that the consensus graph extracted from Twitter can capture the organizational correlations effectively.Comment: 11 pages, 4 figure

    Discovering Dense Correlated Subgraphs in Dynamic Networks

    Full text link
    Given a dynamic network, where edges appear and disappear over time, we are interested in finding sets of edges that have similar temporal behavior and form a dense subgraph. Formally, we define the problem as the enumeration of the maximal subgraphs that satisfy specific density and similarity thresholds. To measure the similarity of the temporal behavior, we use the correlation between the binary time series that represent the activity of the edges. For the density, we study two variants based on the average degree. For these problem variants we enumerate the maximal subgraphs and compute a compact subset of subgraphs that have limited overlap. We propose an approximate algorithm that scales well with the size of the network, while achieving a high accuracy. We evaluate our framework on both real and synthetic datasets. The results of the synthetic data demonstrate the high accuracy of the approximation and show the scalability of the framework.Comment: Full version of the paper included in the proceedings of the PAKDD 2021 conferenc

    Temporal Representation in Semantic Graphs

    Full text link

    Temporal Networks

    Full text link
    A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks
    • …
    corecore