9,081 research outputs found

    Efficient Discovery of Ontology Functional Dependencies

    Full text link
    Poor data quality has become a pervasive issue due to the increasing complexity and size of modern datasets. Constraint based data cleaning techniques rely on integrity constraints as a benchmark to identify and correct errors. Data values that do not satisfy the given set of constraints are flagged as dirty, and data updates are made to re-align the data and the constraints. However, many errors often require user input to resolve due to domain expertise defining specific terminology and relationships. For example, in pharmaceuticals, 'Advil' \emph{is-a} brand name for 'ibuprofen' that can be captured in a pharmaceutical ontology. While functional dependencies (FDs) have traditionally been used in existing data cleaning solutions to model syntactic equivalence, they are not able to model broader relationships (e.g., is-a) defined by an ontology. In this paper, we take a first step towards extending the set of data quality constraints used in data cleaning by defining and discovering \emph{Ontology Functional Dependencies} (OFDs). We lay out theoretical and practical foundations for OFDs, including a set of sound and complete axioms, and a linear inference procedure. We then develop effective algorithms for discovering OFDs, and a set of optimizations that efficiently prune the search space. Our experimental evaluation using real data show the scalability and accuracy of our algorithms.Comment: 12 page

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Profiling relational data: a survey

    Get PDF
    Profiling data to determine metadata about a given dataset is an important and frequent activity of any IT professional and researcher and is necessary for various use-cases. It encompasses a vast array of methods to examine datasets and produce metadata. Among the simpler results are statistics, such as the number of null values and distinct values in a column, its data type, or the most frequent patterns of its data values. Metadata that are more difficult to compute involve multiple columns, namely correlations, unique column combinations, functional dependencies, and inclusion dependencies. Further techniques detect conditional properties of the dataset at hand. This survey provides a classification of data profiling tasks and comprehensively reviews the state of the art for each class. In addition, we review data profiling tools and systems from research and industry. We conclude with an outlook on the future of data profiling beyond traditional profiling tasks and beyond relational databases

    Describing the complexity of systems: multi-variable "set complexity" and the information basis of systems biology

    Full text link
    Context dependence is central to the description of complexity. Keying on the pairwise definition of "set complexity" we use an information theory approach to formulate general measures of systems complexity. We examine the properties of multi-variable dependency starting with the concept of interaction information. We then present a new measure for unbiased detection of multi-variable dependency, "differential interaction information." This quantity for two variables reduces to the pairwise "set complexity" previously proposed as a context-dependent measure of information in biological systems. We generalize it here to an arbitrary number of variables. Critical limiting properties of the "differential interaction information" are key to the generalization. This measure extends previous ideas about biological information and provides a more sophisticated basis for study of complexity. The properties of "differential interaction information" also suggest new approaches to data analysis. Given a data set of system measurements differential interaction information can provide a measure of collective dependence, which can be represented in hypergraphs describing complex system interaction patterns. We investigate this kind of analysis using simulated data sets. The conjoining of a generalized set complexity measure, multi-variable dependency analysis, and hypergraphs is our central result. While our focus is on complex biological systems, our results are applicable to any complex system.Comment: 44 pages, 12 figures; made revisions after peer revie

    Attribute Interactions in Medical Data Analysis

    Get PDF
    There is much empirical evidence about the success of naive Bayesian classification (NBC) in medical applications of attribute-based machine learning. NBC assumes conditional independence between attributes. In classification, such classifiers sum up the pieces of class-related evidence from individual attributes, independently of other attributes. The performance, however, deteriorates significantly when the “interactions” between attributes become critical. We propose an approach to handling attribute interactions within the framework of “voting” classifiers, such as NBC. We propose an operational test for detecting interactions in learning data and a procedure that takes the detected interactions into account while learning. This approach induces a structuring of the domain of attributes, it may lead to improved classifier’s performance and may provide useful novel information for the domain expert when interpreting the results of learning. We report on its application in data analysis and model construction for the prediction of clinical outcome in hip arthroplasty
    corecore