951 research outputs found

    Two Novel Methods for Clustering Short Time-Course Gene Expression Profiles

    Get PDF
    As genes with similar expression pattern are very likely having the same biological function, cluster analysis becomes an important tool to understand and predict gene functions from gene expression profi les. In many situations, each gene expression profi le only contains a few data points. Directly applying traditional clustering algorithms to such short gene expression profi les does not yield satisfactory results. Developing clustering algorithms for short gene expression profi les is necessary. In this thesis, two novel methods are developed for clustering short gene expression pro files. The fi rst method, called the network-based clustering method, deals with the defect of short gene expression profi les by generating a gene co-expression network using conditional mutual information (CMI), which measures the non-linear relationship between two genes, as well as considering indirect gene relationships in the presence of other genes. The network-based clustering method consists of two steps. A gene co-expression network is firstly constructed from short gene expression profi les using a path consistency algorithm (PCA) based on the CMI between genes. Then, a gene functional module is identi ed in terms of cluster cohesiveness. The network-based clustering method is evaluated on 10 large scale Arabidopsis thaliana short time-course gene expression profi le datasets in terms of gene ontology (GO) enrichment analysis, and compared with an existing method called Clustering with Over-lapping Neighbourhood Expansion (ClusterONE). Gene functional modules identi ed by the network-based clustering method for 10 datasets returns target GO p-values as low as 10-24, whereas the original ClusterONE yields insigni cant results. In order to more speci cally cluster gene expression profi les, a second clustering method, namely the protein-protein interaction (PPI) integrated clustering method, is developed. It is designed for clustering short gene expression profi les by integrating gene expression profi le patterns and curated PPI data. The method consists of the three following steps: (1) generate a number of prede ned profi le patterns according to the number of data points in the profi les and assign each gene to the prede fined profi le to which its expression profi le is the most similar; (2) integrate curated PPI data to refi ne the initial clustering result from (1); (3) combine the similar clusters from (2) to gradually reduce cluster numbers by a hierarchical clustering method. The PPI-integrated clustering method is evaluated on 10 large scale A. thaliana datasets using GO enrichment analysis, and by comparison with an existing method called Short Time-series Expression Miner (STEM). Target gene functional clusters identi ed by the PPI-integrated clustering method for 10 datasets returns GO p-values as low as 10-62, whereas STEM returns GO p-values as low as 10-38. In addition to the method development, obtained clusters by two proposed methods are further analyzed to identify cross-talk genes under fi ve stress conditions in root and shoot tissues. A list of potential abiotic stress tolerant genes are found

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    PathFinder: mining signal transduction pathway segments from protein-protein interaction networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A Signal transduction pathway is the chain of processes by which a cell converts an extracellular signal into a response. In most unicellular organisms, the number of signal transduction pathways influences the number of ways the cell can react and respond to the environment. Discovering signal transduction pathways is an arduous problem, even with the use of systematic genomic, proteomic and metabolomic technologies. These techniques lead to an enormous amount of data and how to interpret and process this data becomes a challenging computational problem.</p> <p>Results</p> <p>In this study we present a new framework for identifying signaling pathways in protein-protein interaction networks. Our goal is to find biologically significant pathway segments in a given interaction network. Currently, protein-protein interaction data has excessive amount of noise, e.g., false positive and false negative interactions. First, we eliminate false positives in the protein-protein interaction network by integrating the network with microarray expression profiles, protein subcellular localization and sequence information. In addition, protein families are used to repair false negative interactions. Then the characteristics of known signal transduction pathways and their functional annotations are extracted in the form of association rules.</p> <p>Conclusion</p> <p>Given a pair of starting and ending proteins, our methodology returns candidate pathway segments between these two proteins with possible missing links (recovered false negatives). In our study, <it>S. cerevisiae </it>(yeast) data is used to demonstrate the effectiveness of our method.</p

    Integrative methods for analyzing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic interaction profiles are highly informative and helpful for understanding the functional linkages between genes, and therefore have been extensively exploited for annotating gene functions and dissecting specific pathway structures. However, our understanding is rather limited to the relationship between double concurrent perturbation and various higher level phenotypic changes, e.g. those in cells, tissues or organs. Modifier screens, such as synthetic genetic arrays (SGA) can help us to understand the phenotype caused by combined gene mutations. Unfortunately, exhaustive tests on all possible combined mutations in any genome are vulnerable to combinatorial explosion and are infeasible either technically or financially. Therefore, an accurate computational approach to predict genetic interaction is highly desirable, and such methods have the potential of alleviating the bottleneck on experiment design.</p> <p>Results</p> <p>In this work, we introduce a computational systems biology approach for the accurate prediction of pairwise synthetic genetic interactions (SGI). First, a high-coverage and high-precision functional gene network (FGN) is constructed by integrating protein-protein interaction (PPI), protein complex and gene expression data; then, a graph-based semi-supervised learning (SSL) classifier is utilized to identify SGI, where the topological properties of protein pairs in weighted FGN is used as input features of the classifier. We compare the proposed SSL method with the state-of-the-art supervised classifier, the support vector machines (SVM), on a benchmark dataset in <it>S. cerevisiae </it>to validate our method's ability to distinguish synthetic genetic interactions from non-interaction gene pairs. Experimental results show that the proposed method can accurately predict genetic interactions in <it>S. cerevisiae </it>(with a sensitivity of 92% and specificity of 91%). Noticeably, the SSL method is more efficient than SVM, especially for very small training sets and large test sets.</p> <p>Conclusions</p> <p>We developed a graph-based SSL classifier for predicting the SGI. The classifier employs topological properties of weighted FGN as input features and simultaneously employs information induced from labelled and unlabelled data. Our analysis indicates that the topological properties of weighted FGN can be employed to accurately predict SGI. Also, the graph-based SSL method outperforms the traditional standard supervised approach, especially when used with small training sets. The proposed method can alleviate experimental burden of exhaustive test and provide a useful guide for the biologist in narrowing down the candidate gene pairs with SGI. The data and source code implementing the method are available from the website: <url>http://home.ustc.edu.cn/~yzh33108/GeneticInterPred.htm</url></p

    Mining Biological Networks towards Protein complex Detection and Gene-Disease Association

    Get PDF
    Large amounts of biological data are continuously generated nowadays, thanks to the advancements of high-throughput experimental techniques. Mining valuable knowledge from such data still motivates the design of suitable computational methods, to complement the experimental work which is often bound by considerable time and cost requirements. Protein complexes or groups of interacting proteins, are key players in most cellular events. The identification of complexes not only allows to better understand normal biological processes but also to uncover Disease-triggering malfunctions. Ultimately, findings in this research branch can highly enhance the design of effective medical treatments. The aim of this research is to detect protein complexes in protein-protein interaction networks and to associate the detected entities to diseases. The work is divided into three main objectives: first, develop a suitable method for the identification of protein complexes in static interaction networks; second, model the dynamic aspect of protein interaction networks and detect complexes accordingly; and third, design a learning model to link proteins, and subsequently protein complexes, to diseases. In response to these objectives, we present, ProRank+, a novel complex-detection approach based on a ranking algorithm and a merging procedure. Then, we introduce DyCluster, which uses gene expression data, to model the dynamics of the interaction networks, and we adapt the detection algorithm accordingly. Finally, we integrate network topology attributes and several biological features of proteins to form a classification model for gene-disease association. The reliability of the proposed methods is supported by various experimental studies conducted to compare them with existing approaches. Pro Rank+ detects more protein complexes than other state-of-the-art methods. DyCluster goes a step further and achieves a better performance than similar techniques. Then, our learning model shows that combining topological and biological features can greatly enhance the gene-disease association process. Finally, we present a comprehensive case study of breast cancer in which we pinpoint disease genes using our learning model; subsequently, we detect favorable groupings of those genes in a protein interaction network using the Pro-rank+ algorithm

    Integrative methods for analysing big data in precision medicine

    Get PDF
    We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of “Big Data” in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Characterizing regulatory path motifs in integrated networks using perturbational data

    Get PDF
    Pathicular – a Cytoscape plugin for analysing cellular responses to transcription factor perturbations is presente
    corecore