16,713 research outputs found

    Cooperation between expert knowledge and data mining discovered knowledge: Lessons learned

    Get PDF
    Expert systems are built from knowledge traditionally elicited from the human expert. It is precisely knowledge elicitation from the expert that is the bottleneck in expert system construction. On the other hand, a data mining system, which automatically extracts knowledge, needs expert guidance on the successive decisions to be made in each of the system phases. In this context, expert knowledge and data mining discovered knowledge can cooperate, maximizing their individual capabilities: data mining discovered knowledge can be used as a complementary source of knowledge for the expert system, whereas expert knowledge can be used to guide the data mining process. This article summarizes different examples of systems where there is cooperation between expert knowledge and data mining discovered knowledge and reports our experience of such cooperation gathered from a medical diagnosis project called Intelligent Interpretation of Isokinetics Data, which we developed. From that experience, a series of lessons were learned throughout project development. Some of these lessons are generally applicable and others pertain exclusively to certain project types

    Achieving non-discrimination in prediction

    Full text link
    Discrimination-aware classification is receiving an increasing attention in data science fields. The pre-process methods for constructing a discrimination-free classifier first remove discrimination from the training data, and then learn the classifier from the cleaned data. However, they lack a theoretical guarantee for the potential discrimination when the classifier is deployed for prediction. In this paper, we fill this gap by mathematically bounding the probability of the discrimination in prediction being within a given interval in terms of the training data and classifier. We adopt the causal model for modeling the data generation mechanism, and formally defining discrimination in population, in a dataset, and in prediction. We obtain two important theoretical results: (1) the discrimination in prediction can still exist even if the discrimination in the training data is completely removed; and (2) not all pre-process methods can ensure non-discrimination in prediction even though they can achieve non-discrimination in the modified training data. Based on the results, we develop a two-phase framework for constructing a discrimination-free classifier with a theoretical guarantee. The experiments demonstrate the theoretical results and show the effectiveness of our two-phase framework
    corecore