6,899 research outputs found

    Assumption 0 analysis: comparative phylogenetic studies in the age of complexity

    Get PDF
    Darwin's panoramic view of biology encompassed two metaphors: the phylogenetic tree, pointing to relatively linear (and divergent) complexity, and the tangled bank, pointing to reticulated (and convergent) complexity. The emergence of phylogenetic systematics half a century ago made it possible to investigate linear complexity in biology. Assumption 0, first proposed in 1986, is not needed for cases of simple evolutionary patterns, but must be invoked when there are complex evolutionary patterns whose hallmark is reticulated relationships. A corollary of Assumption 0, the duplication convention, was proposed in 1990, permitting standard phylogenetic systematic ontology to be used in discovering reticulated evolutionary histories. In 2004, a new algorithm, phylogenetic analysis for comparing trees (PACT), was developed specifically for use in analyses invoking Assumption 0. PACT can help discern complex evolutionary explanations for historical biogeographical, coevolutionary, phylogenetic, and tokogenetic processe

    Predominant contribution of cis-regulatory divergence in the evolution of mouse alternative splicing

    Get PDF
    Divergence of alternative splicing represents one of the major driving forces to shape phenotypic diversity during evolution. However, the extent to which these divergences could be explained by the evolving cis-regulatory versus trans-acting factors remains unresolved. To globally investigate the relative contributions of the two factors for the first time in mammals, we measured splicing difference between C57BL/6J and SPRET/EiJ mouse strains and allele-specific splicing pattern in their F1 hybrid. Out of 11,818 alternative splicing events expressed in the cultured fibroblast cells, we identified 796 with significant difference between the parental strains. After integrating allele-specific data from F1 hybrid, we demonstrated that these events could be predominately attributed to cis-regulatory variants, including those residing at and beyond canonical splicing sites. Contrary to previous observations in Drosophila, such predominant contribution was consistently observed across different types of alternative splicing. Further analysis of liver tissues from the same mouse strains and reanalysis of published datasets on other strains showed similar trends, implying in general the predominant contribution of cis-regulatory changes in the evolution of mouse alternative splicing

    Temporal Feature Selection with Symbolic Regression

    Get PDF
    Building and discovering useful features when constructing machine learning models is the central task for the machine learning practitioner. Good features are useful not only in increasing the predictive power of a model but also in illuminating the underlying drivers of a target variable. In this research we propose a novel feature learning technique in which Symbolic regression is endowed with a ``Range Terminal\u27\u27 that allows it to explore functions of the aggregate of variables over time. We test the Range Terminal on a synthetic data set and a real world data in which we predict seasonal greenness using satellite derived temperature and snow data over a portion of the Arctic. On the synthetic data set we find Symbolic regression with the Range Terminal outperforms standard Symbolic regression and Lasso regression. On the Arctic data set we find it outperforms standard Symbolic regression, fails to beat the Lasso regression, but finds useful features describing the interaction between Land Surface Temperature, Snow, and seasonal vegetative growth in the Arctic

    New Trends in Artificial Intelligence: Applications of Particle Swarm Optimization in Biomedical Problems

    Get PDF
    Optimization is a process to discover the most effective element or solution from a set of all possible resources or solutions. Currently, there are various biological problems such as extending from biomolecule structure prediction to drug discovery that can be elevated by opting standard protocol for optimization. Particle swarm optimization (PSO) process, purposed by Dr. Eberhart and Dr. Kennedy in 1995, is solely based on population stochastic optimization technique. This method was designed by the researchers after inspired by social behavior of flocking bird or schooling fishes. This method shares numerous resemblances with the evolutionary computation procedures such as genetic algorithms (GA). Since, PSO algorithms is easy process to subject with minor adjustment of a few restrictions, it has gained more attention or advantages over other population based algorithms. Hence, PSO algorithms is widely used in various research fields like ranging from artificial neural network training to other areas where GA can be used in the system

    Gene expression in Leishmania is regulated predominantly by gene dosage

    Get PDF
    ABSTRACT Leishmania tropica, a unicellular eukaryotic parasite present in North and East Africa, the Middle East, and the Indian subcontinent, has been linked to large outbreaks of cutaneous leishmaniasis in displaced populations in Iraq, Jordan, and Syria. Here, we report the genome sequence of this pathogen and 7,863 identified protein-coding genes, and we show that the majority of clinical isolates possess high levels of allelic diversity, genetic admixture, heterozygosity, and extensive aneuploidy. By utilizing paired genome-wide high-throughput DNA sequencing (DNA-seq) with RNA-seq, we found that gene dosage, at the level of individual genes or chromosomal “somy” (a general term covering disomy, trisomy, tetrasomy, etc.), accounted for greater than 85% of total gene expression variation in genes with a 2-fold or greater change in expression. High gene copy number variation (CNV) among membrane-bound transporters, a class of proteins previously implicated in drug resistance, was found for the most highly differentially expressed genes. Our results suggest that gene dosage is an adaptive trait that confers phenotypic plasticity among natural Leishmania populations by rapid down- or upregulation of transporter proteins to limit the effects of environmental stresses, such as drug selection. IMPORTANCE Leishmania is a genus of unicellular eukaryotic parasites that is responsible for a spectrum of human diseases that range from cutaneous leishmaniasis (CL) and mucocutaneous leishmaniasis (MCL) to life-threatening visceral leishmaniasis (VL). Developmental and strain-specific gene expression is largely thought to be due to mRNA message stability or posttranscriptional regulatory networks for this species, whose genome is organized into polycistronic gene clusters in the absence of promoter-mediated regulation of transcription initiation of nuclear genes. Genetic hybridization has been demonstrated to yield dramatic structural genomic variation, but whether such changes in gene dosage impact gene expression has not been formally investigated. Here we show that the predominant mechanism determining transcript abundance differences (>85%) in Leishmania tropica is that of gene dosage at the level of individual genes or chromosomal somy

    Discovering Weighted Patterns in Intron Sequences Using Self-Adaptive Harmony Search and Back-Propagation Algorithms

    Get PDF
    A hybrid self-adaptive harmony search and back-propagation mining system was proposed to discover weighted patterns in human intron sequences. By testing the weights under a lazy nearest neighbor classifier, the numerical results revealed the significance of these weighted patterns. Comparing these weighted patterns with the popular intron consensus model, it is clear that the discovered weighted patterns make originally the ambiguous 5SS and 3SS header patterns more specific and concrete
    corecore