7,663 research outputs found

    Trajectory data mining: A review of methods and applications

    Get PDF
    The increasing use of location-aware devices has led to an increasing availability of trajectory data. As a result, researchers devoted their efforts to developing analysis methods including different data mining methods for trajectories. However, the research in this direction has so far produced mostly isolated studies and we still lack an integrated view of problems in applications of trajectory mining that were solved, the methods used to solve them, and applications using the obtained solutions. In this paper, we first discuss generic methods of trajectory mining and the relationships between them. Then, we discuss and classify application problems that were solved using trajectory data and relate them to the generic mining methods that were used and real world applications based on them. We classify trajectory-mining application problems under major problem groups based on how they are related. This classification of problems can guide researchers in identifying new application problems. The relationships between the methods together with the association between the application problems and mining methods can help researchers in identifying gaps between methods and inspire them to develop new methods. This paper can also guide analysts in choosing a suitable method for a specific problem. The main contribution of this paper is to provide an integrated view relating applications of mining trajectory data and the methods used

    Towards Real-Time Detection and Tracking of Spatio-Temporal Features: Blob-Filaments in Fusion Plasma

    Full text link
    A novel algorithm and implementation of real-time identification and tracking of blob-filaments in fusion reactor data is presented. Similar spatio-temporal features are important in many other applications, for example, ignition kernels in combustion and tumor cells in a medical image. This work presents an approach for extracting these features by dividing the overall task into three steps: local identification of feature cells, grouping feature cells into extended feature, and tracking movement of feature through overlapping in space. Through our extensive work in parallelization, we demonstrate that this approach can effectively make use of a large number of compute nodes to detect and track blob-filaments in real time in fusion plasma. On a set of 30GB fusion simulation data, we observed linear speedup on 1024 processes and completed blob detection in less than three milliseconds using Edison, a Cray XC30 system at NERSC.Comment: 14 pages, 40 figure

    Clustering in Geo-Social Networks

    Get PDF
    The rapid growth of Geo-Social Networks (GeoSNs) provides a new and rich form of data. Users of GeoSNs can capture their geographic locations and share them with other users via an operation named checkin. Thus, GeoSNs can track the connections (and the time of these connections) of geographic data to their users. In addition, the users are organized in a social network, which can be extended to a heterogeneous network if the connections to places via checkins are also considered. The goal of this paper is to analyze the opportunities in clustering this rich form of data. We first present a model for clustering geographic locations, based on GeoSN data. Then, we discuss how this model can be extended to consider temporal information from checkins. Finally, we study how the accuracy of community detection approaches can be improved by taking into account the checkins of users in a GeoSN.published_or_final_versio
    corecore