4,180 research outputs found

    Mining Time-delayed Gene Regulation Patterns from Gene Expression Data

    Get PDF
    Discovered gene regulation networks are very helpful to predict unknown gene functions. The activating and deactivating relations between genes and genes are mined from microarray gene expression data. There are evidences showing that multiple time units delay exist in a gene regulation process. Association rule mining technique is very suitable for finding regulation relations among genes. However, current association rule mining techniques cannot handle temporally ordered transactions. We propose a modified association rule mining technique for efficiently discovering time-delayed regulation relationships among genes.By analyzing gene expression data, we can discover gene relations. Thus, we use modified association rule to mine gene regulation patterns. Our proposed method, BC3, is designed to mine time-delayed gene regulation patterns with length 3 from time series gene expression data. However, the front two items are regulators, and the last item is their affecting target. First we use Apriori to find frequent 2-itemset in order to figure backward to BL1. The Apriori mined the frequent 2-itemset in the same time point, so we make the L2 split to length one for having relation in the same time point. Then we combine BL1 with L1 to a new ordered-set BC2 with time-delayed relations. After pruning BC2 with the threshold, BL2 is derived. The results are worked out by BL2 joining itself to BC3, and sifting BL3 from BC3. We use yeast gene expression data to evaluate our method and analyze the results to show our work is efficient

    Trajectory-based differential expression analysis for single-cell sequencing data

    Get PDF
    Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed between lineages, to illuminate the underlying biological processes. Current data analysis procedures, however, either fail to exploit the continuous resolution provided by trajectory inference, or fail to pinpoint the exact types of differential expression. We introduce tradeSeq, a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of both within-lineage and between-lineage differential expression. By incorporating observation-level weights, the model additionally allows to account for zero inflation. We evaluate the method on simulated datasets and on real datasets from droplet-based and full-length protocols, and show that it yields biological insights through a clear interpretation of the data. Downstream of trajectory inference for cell lineages based on scRNA-seq data, differential expression analysis yields insight into biological processes. Here, Van den Berge et al. develop tradeSeq, a framework for the inference of within and between-lineage differential expression, based on negative binomial generalized additive models

    Bayesian Modeling Approaches for Temporal Dynamics in RNA-seq Data

    Get PDF
    Analysis of differential expression has been a central role to address the variety of biological questions in the manner to characterize abnormal patterns of cellular and molecular functions for last decades. To date, identification of differentially expressed genes and isoforms has been more intensively focused on temporal dynamics over a series of time points. Bayesian strategies have been successfully employed to uncover the complexity of biological interest with the methodological and analytical perspectives for the various platforms of high-throughput data, for instance, methods in differential expression analysis and network modules in transcriptome data, peak-callers in ChipSeq data, target prediction in microRNA data and meta-methods between different platforms. In this chapter, we will discuss how our methodological works based on Bayesian models address important questions to arise in the architecture of temporal dynamics in RNA-seq data

    Discovering Biological Progression Underlying Microarray Samples

    Get PDF
    In biological systems that undergo processes such as differentiation, a clear concept of progression exists. We present a novel computational approach, called Sample Progression Discovery (SPD), to discover patterns of biological progression underlying microarray gene expression data. SPD assumes that individual samples of a microarray dataset are related by an unknown biological process (i.e., differentiation, development, cell cycle, disease progression), and that each sample represents one unknown point along the progression of that process. SPD aims to organize the samples in a manner that reveals the underlying progression and to simultaneously identify subsets of genes that are responsible for that progression. We demonstrate the performance of SPD on a variety of microarray datasets that were generated by sampling a biological process at different points along its progression, without providing SPD any information of the underlying process. When applied to a cell cycle time series microarray dataset, SPD was not provided any prior knowledge of samples' time order or of which genes are cell-cycle regulated, yet SPD recovered the correct time order and identified many genes that have been associated with the cell cycle. When applied to B-cell differentiation data, SPD recovered the correct order of stages of normal B-cell differentiation and the linkage between preB-ALL tumor cells with their cell origin preB. When applied to mouse embryonic stem cell differentiation data, SPD uncovered a landscape of ESC differentiation into various lineages and genes that represent both generic and lineage specific processes. When applied to a prostate cancer microarray dataset, SPD identified gene modules that reflect a progression consistent with disease stages. SPD may be best viewed as a novel tool for synthesizing biological hypotheses because it provides a likely biological progression underlying a microarray dataset and, perhaps more importantly, the candidate genes that regulate that progression

    Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks

    Get PDF
    Motivation: The generation of time series transcriptomic datasets collected under multiple experimental conditions has proven to be a powerful approach for disentangling complex biological processes, allowing for the reverse engineering of gene regulatory networks (GRNs). Most methods for reverse engineering GRNs from multiple datasets assume that each of the time series were generated from networks with identical topology. In this study, we outline a hierarchical, non-parametric Bayesian approach for reverse engineering GRNs using multiple time series that can be applied in a number of novel situations including: (i) where different, but overlapping sets of transcription factors are expected to bind in the different experimental conditions; that is, where switching events could potentially arise under the different treatments and (ii) for inference in evolutionary related species in which orthologous GRNs exist. More generally, the method can be used to identify context-specific regulation by leveraging time series gene expression data alongside methods that can identify putative lists of transcription factors or transcription factor targets. Results: The hierarchical inference outperforms related (but non-hierarchical) approaches when the networks used to generate the data were identical, and performs comparably even when the networks used to generate data were independent. The method was subsequently used alongside yeast one hybrid and microarray time series data to infer potential transcriptional switches in Arabidopsis thaliana response to stress. The results confirm previous biological studies and allow for additional insights into gene regulation under various abiotic stresses. Availability: The methods outlined in this article have been implemented in Matlab and are available on request
    corecore