143,841 research outputs found

    Discovering learning processes using inductive miner: A case study with learning management systems (LMSs)

    Get PDF
    Resumen tomado de la publicaciónDescubriendo procesos de aprendizaje aplicando Inductive Miner: un estudio de caso en Learning Management Systems (LMSs). Antecedentes: en la minería de procesos con datos educativos se utilizan diferentes algoritmos para descubrir modelos, sobremanera el Alpha Miner, el Heuristic Miner y el Evolutionary Tree Miner. En este trabajo proponemos la implementación de un nuevo algoritmo en datos educativos, el denominado Inductive Miner. Método: hemos utilizado datos de interacción de 101 estudiantes universitarios en una asignatura de grado desarrollada en la plataforma Moodle 2.0. Una vez prepocesados se ha realizado la minería de procesos sobre 21.629 eventos para descubrir los modelos que generan los diferentes algoritmos y comparar sus medidas de ajuste, precisión, simplicidad y generalización. Resultados: en las pruebas realizadas en nuestro conjunto de datos el algoritmo Inductive Miner es el que obtiene mejores resultados, especialmente para el valor de ajuste, criterio de mayor relevancia en lo que respecta al descubrimiento de modelos. Además, cuando ponderamos con pesos las diferentes métricas seguimos obteniendo la mejor medida general con el Inductive Miner. Conclusiones: la implementación de Inductive Miner en datos educativos es una nueva aplicación que, además de obtener mejores resultados que otros algoritmos con nuestro conjunto de datos, proporciona modelos válidos e interpretables en términos educativos.Universidad de Oviedo. Biblioteca de Psicología; Plaza Feijoo, s/n.; 33003 Oviedo; Tel. +34985104146; Fax +34985104126; [email protected]

    Peer assessment and knowledge discovering in a community of learners

    Get PDF
    Thanks to the exponential growth of the Internet, Distance Education is becoming more and more strategic in many fields of daily life. Its main advantage is that students can learn through appropriate web platforms that allow them to take advantage of multimedia and interactive teaching materials, without constraints neither of time nor of space. Today, in fact, the Internet offers many platforms suitable for this purpose, such as Moodle, ATutor and others. Coursera is another example of a platform that offers different courses to thousands of enrolled students. This approach to learning is, however, posing new problems such as that of the assessment of the learning status of the learner in the case where there were thousands of students following a course, as is in Massive On-line Courses (MOOC). The Peer Assessment can therefore be a solution to this problem: evaluation takes place between peers, creating a dynamic in the community of learners that evolves autonomously. In this article, we present a first step towards this direction through a peer assessment mechanism led by the teacher who intervenes by evaluating a very small part of the students. Through a mechanism based on machine learning, and in particular on a modified form of K-NN, given the teacher’s grades, the system should converge towards an evaluation that is as similar as possible to the one that the teacher would have given. An experiment is presented with encouraging results

    Predictive User Modeling with Actionable Attributes

    Get PDF
    Different machine learning techniques have been proposed and used for modeling individual and group user needs, interests and preferences. In the traditional predictive modeling instances are described by observable variables, called attributes. The goal is to learn a model for predicting the target variable for unseen instances. For example, for marketing purposes a company consider profiling a new user based on her observed web browsing behavior, referral keywords or other relevant information. In many real world applications the values of some attributes are not only observable, but can be actively decided by a decision maker. Furthermore, in some of such applications the decision maker is interested not only to generate accurate predictions, but to maximize the probability of the desired outcome. For example, a direct marketing manager can choose which type of a special offer to send to a client (actionable attribute), hoping that the right choice will result in a positive response with a higher probability. We study how to learn to choose the value of an actionable attribute in order to maximize the probability of a desired outcome in predictive modeling. We emphasize that not all instances are equally sensitive to changes in actions. Accurate choice of an action is critical for those instances, which are on the borderline (e.g. users who do not have a strong opinion one way or the other). We formulate three supervised learning approaches for learning to select the value of an actionable attribute at an instance level. We also introduce a focused training procedure which puts more emphasis on the situations where varying the action is the most likely to take the effect. The proof of concept experimental validation on two real-world case studies in web analytics and e-learning domains highlights the potential of the proposed approaches

    A Methodology for Discovering how to Adaptively Personalize to Users using Experimental Comparisons

    Full text link
    We explain and provide examples of a formalism that supports the methodology of discovering how to adapt and personalize technology by combining randomized experiments with variables associated with user models. We characterize a formal relationship between the use of technology to conduct A/B experiments and use of technology for adaptive personalization. The MOOClet Formalism [11] captures the equivalence between experimentation and personalization in its conceptualization of modular components of a technology. This motivates a unified software design pattern that enables technology components that can be compared in an experiment to also be adapted based on contextual data, or personalized based on user characteristics. With the aid of a concrete use case, we illustrate the potential of the MOOClet formalism for a methodology that uses randomized experiments of alternative micro-designs to discover how to adapt technology based on user characteristics, and then dynamically implements these personalized improvements in real time

    Ranking relations using analogies in biological and information networks

    Get PDF
    Analogical reasoning depends fundamentally on the ability to learn and generalize about relations between objects. We develop an approach to relational learning which, given a set of pairs of objects S={A(1):B(1),A(2):B(2),…,A(N):B(N)}\mathbf{S}=\{A^{(1)}:B^{(1)},A^{(2)}:B^{(2)},\ldots,A^{(N)}:B ^{(N)}\}, measures how well other pairs A:B fit in with the set S\mathbf{S}. Our work addresses the following question: is the relation between objects A and B analogous to those relations found in S\mathbf{S}? Such questions are particularly relevant in information retrieval, where an investigator might want to search for analogous pairs of objects that match the query set of interest. There are many ways in which objects can be related, making the task of measuring analogies very challenging. Our approach combines a similarity measure on function spaces with Bayesian analysis to produce a ranking. It requires data containing features of the objects of interest and a link matrix specifying which relationships exist; no further attributes of such relationships are necessary. We illustrate the potential of our method on text analysis and information networks. An application on discovering functional interactions between pairs of proteins is discussed in detail, where we show that our approach can work in practice even if a small set of protein pairs is provided.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS321 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore