8,027 research outputs found

    MEMOFinder: combining _de_ _novo_ motif prediction methods with a database of known motifs

    Get PDF
    *Background:* Methods for finding overrepresented sequence motifs are useful in several key areas of computational biology. They aim at detecting very weak signals responsible for biological processes requiring robust sequence identification like transcription-factor binding to DNA or docking sites in proteins. Currently, general performance of the model-based motif-finding methods is unsatisfactory; however, different methods are successful in different cases. This leads to the practical problem of combining results of different motif-finding tools, taking into account current knowledge collected in motif databases.
*Results:* We propose a new complete service allowing researchers to submit their sequences for analysis by four different motif-finding methods for clustering and comparison with a reference motif database. It is tailored for regulatory motif detection, however it allows for substantial amount of configuration regarding sequence background, motif database and parameters for motif-finding methods.
*Availability:* The method is available online as a webserver at: http://bioputer.mimuw.edu.pl/software/mmf/. In addition, the source code is released on a GNU General Public License

    Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies

    Get PDF
    Existing sequence alignment algorithms use heuristic scoring schemes which cannot be used as objective distance metrics. Therefore one relies on measures like the p- or log-det distances, or makes explicit, and often simplistic, assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI) which is, in principle, an objective and model independent similarity measure. MI can be estimated by concatenating and zipping sequences, yielding thereby the "normalized compression distance". So far this has produced promising results, but with uncontrolled errors. We describe a simple approach to get robust estimates of MI from global pairwise alignments. Using standard alignment algorithms, this gives for animal mitochondrial DNA estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. Due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics, but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia
    • …
    corecore