763 research outputs found

    FEDRO: a software tool for the automatic discovery of candidate ORFs in plants with c →u RNA editing

    Get PDF
    BACKGROUND: RNA editing is an important mechanism for gene expression in plants organelles. It alters the direct transfer of genetic information from DNA to proteins, due to the introduction of differences between RNAs and the corresponding coding DNA sequences. Software tools successful for the search of genes in other organisms not always are able to correctly perform this task in plants organellar genomes. Moreover, the available software tools predicting RNA editing events utilise algorithms that do not account for events which may generate a novel start codon. RESULTS: We present Fedro, a Java software tool implementing a novel strategy to generate candidate Open Reading Frames (ORFs) resulting from Cytidine to Uridine (c→u) editing substitutions which occur in the mitochondrial genome (mtDNA) of a given input plant. The goal is to predict putative proteins of plants mitochondria that have not been yet annotated. In order to validate the generated ORFs, a screening is performed by checking for sequence similarity or presence in active transcripts of the same or similar organisms. We illustrate the functionalities of our framework on a model organism. CONCLUSIONS: The proposed tool may be used also on other organisms and genomes. Fedro is publicly available at http://math.unipa.it/rombo/FEDRO

    BIOINFORMATIC TOOLS FOR NEXT GENERATION GENOMICS

    Get PDF
    New sequencing strategies have redefined the concept of \u201chigh-throughput sequencing\u201d and many companies, researchers, and recent reviews use the term \u201cNext-Generation Sequencing\u201d (NGS) instead of high-throughput sequencing. These advances have introduced a new era in genomics and bioinformatics\u2060\u2060. During my years as PhD student I have developed various software, algorithms and procedures for the analysis of Nest Generation sequencing data required for distinct biological research projects and collaborations in which our research group was involved. The tools and algorithms are thus presented in their appropriate biological contexts. Initially I dedicated myself to the development of scripts and pipelines which were used to assemble and annotate the mitochondrial genome of the model plant Vitis vinifera. The sequence was subsequently used as a reference to study the RNA editing of mitochondrial transcripts, using data produced by the Illumina and SOLiD platforms. I subsequently developed a new approach and a new software package for the detection of of relatively small indels between a donor and a reference genome, using NGS paired-end (PE) data and machine learning algorithms. I was able to show that, suitable Paired End data, contrary to previous assertions, can be used to detect, with high confidence, very small indels in low complexity genomic contexts. Finally I participated in a project aimed at the reconstruction of the genomic sequences of 2 distinct strains of the biotechnologically relevant fungus Fusarium. In this context I performed the sequence assembly to obtain the initial contigs and devised and implemented a new scaffolding algorithm which has proved to be particularly efficient

    Décodage de l'expression de gènes cryptiques

    Full text link
    Pour certaines espèces, les nouvelles technologies de séquençage à haut débit et les pipelines automatiques d'annotation permettent actuellement de passer du tube Eppendorf au fichier genbank en un clic de souris, ou presque. D'autres organismes, en revanche, résistent farouchement au bio-informaticien le plus acharné en leur opposant une complexité génomique confondante. Les diplonémides en font partie. Ma thèse est centrée sur la découverte de nouvelles stratégies d'encryptage de l'information génétique chez ces eucaryotes, et l'identification des processus moléculaires de décodage. Les diplonémides sont des protistes marins qui prospèrent à travers tous les océans de la planète. Ils se distinguent par une diversité d'espèces riche et inattendue. Mais la caractéristique la plus fascinante de ce groupe est leur génome mitochondrial en morceaux dont les gènes sont encryptés. Ils sont décodés au niveau ARN par trois processus: (i) l'épissage en trans, (ii) l'édition par polyuridylation à la jonction des fragments de gènes, et (iii) l'édition par substitution de A-vers-I et C-vers-T; une diversité de processus posttranscriptionnels exceptionnelle dans les mitochondries. Par des méthodes bio-informatiques, j'ai reconstitué complètement le transcriptome mitochondrial à partir de données de séquences ARN à haut débit. Nous avons ainsi découvert six nouveaux gènes dont l'un présente des isoformes par épissage alternatif en trans, 216 positions éditées par polyuridylation sur 14 gènes (jusqu'à 29 uridines par position) et 114 positions éditées par déamination de A-vers-I et C-vers-T sur sept gènes (nad4, nad7, rns, y1, y2, y3, y5). Afin d'identifier les composants de la machinerie réalisant la maturation des ARNs mitochondriaux, le génome nucléaire a été séquencé, puis je l'ai assemblé et annoté. Cette machinerie est probablement singulière et complexe car aucun signal en cis ni acteur en trans caractéristiques des machineries d'épissage connues n'a été trouvé. J'ai identifié plusieurs candidats prometteurs qui devront être validés expérimentalement: des ARN ligases, un nombre important de protéines de la famille des PPR impliquées dans l'édition des ARNs dans les organites de plantes, ainsi que plusieurs déaminases. Durant ma thèse, nous avons mis en évidence de nouveaux types de maturation posttranscriptionnelle des ARNs dans la mitochondrie des diplonémides et identifié des candidats prometteurs de la machinerie. Ces composants, capables de lier précisément des fragments d'ARN et de les éditer pourraient trouver des applications biotechnologique. Au niveau évolutif, la caractérisation de nouvelles excentricités moléculaires de ce type nous donne une idée des processus de recrutement de gènes, de leur adaptation à de nouvelles fonctions, et de la mise en place de machineries moléculaires complexes.Thanks to new high throughput sequencing technologies and automatic annotation pipelines, proceeding from an eppendorf tube to a genbank file can be achieved in a single mouse click or so, for some species. Others, however, fiercely resist bioinformaticians with their confounding genomic complexity. Diplonemids are one of them. My thesis is centered on the discovery of new strategies for encrypting genetic information in eukaryotes, and the identification of molecular decoding processes. Diplonemids are a group of poorly studied marine protists. Unexpectedly, metagenomic studies have recently ranked this group as one of the most diverse in the oceans. Yet, their most distinctive feature is their multipartite mitochondrial genome with genes in pieces, and encryption by nucleotide deletions and substitutions. Genes are decrypted at the RNA level through three processes: (i) trans-splicing, (ii) polyuridylation at the junction of gene pieces and (iii) substitutions of A-to-I and C-to-T. Such a diverse arsenal of mitochondrial post-transcriptional processes is highly exceptional. Using a bioinformatics approach, I have reconstructed the mitochondrial transcriptome from RNA-seq libraries. We have identified six new genes including one that presents alternative trans-splicing isoforms. In total, there are 216 uridines added in 14 genes with up to 29 U insertions, and 114 positions edited by deamination (A-to-I or C-to-T) among seven genes (nad4, nad7, rns, y1, y2, y3, y5). In order to identify the machinery that processes mitochondrial RNAs, the nuclear genome has been sequenced. I have then assembled and annotated the genome. This machinery is probably unique and complex because no cis signal or trans actor typical for known splicing machineries have been found. I have identified promising protein candidates that are worth to be tested experimentally, notably RNA ligases, numerous members of the PPR family involved in plants RNA editing and deaminases. During my thesis, we have identified new types of post-transcriptional RNA processing in diplonemid mitochondria and identified new promising candidates for the machinery. A system capable of joining precisely or editing RNAs could find biotechnological applications. From an evolutionary perspective, the discovery of new molecular systems gives insight into the process of gene recruitment, adaptation to new functions and establishment of complex molecular machineries

    Model Organisms in Plant Genetics

    Get PDF
    Model plants are required for research when targeted plant species are difficult to study or when research material is unavailable. Importantly, knowledge gained from model plants can be generally translated to other related plant species because many key cellular and molecular processes are conserved and regulated by ‘blueprint’ genes inherited from a common ancestor. Model Organisms in Plant Genetics addresses characteristics of model plants such as Arabidopsis, moss, soybean, maize, and cotton, highlighting their advantages and limitations as well as their importance in studies of plant development, plant genome polyploidization, adaptive selection, evolution, and domestication, as well as their importance in crop improvement

    Bioinformatics as a Tool for the Structural and Evolutionary Analysis of Proteins

    Get PDF
    This chapter deals with the topic of bioinformatics, computational, mathematics, and statistics tools applied to biology, essential for the analysis and characterization of biological molecules, in particular proteins, which play an important role in all cellular and evolutionary processes of the organisms. In recent decades, with the next generation sequencing technologies and bioinformatics, it has facilitated the collection and analysis of a large amount of genomic, transcriptomic, proteomic, and metabolomic data from different organisms that have allowed predictions on the regulation of expression, transcription, translation, structure, and mechanisms of action of proteins as well as homology, mutations, and evolutionary processes that generate structural and functional changes over time. Although the information in the databases is greater every day, all bioinformatics tools continue to be constantly modified to improve performance that leads to more accurate predictions regarding protein functionality, which is why bioinformatics research remains a great challenge

    ReNE: A Cytoscape Plugin for Regulatory Network Enhancement

    Get PDF
    One of the biggest challenges in the study of biological regulatory mechanisms is the integration, modeling, and analysis of the complex interactions which take place in biological networks. Despite post transcriptional regulatory elements (i.e., miRNAs) are widely investigated in current research, their usage and visualization in biological networks is very limited. Regulatory networks are commonly limited to gene entities. To integrate networks with post transcriptional regulatory data, researchers are therefore forced to manually resort to specific third party databases. In this context, we introduce ReNE, a Cytoscape 3.x plugin designed to automatically enrich a standard gene-based regulatory network with more detailed transcriptional, post transcriptional, and translational data, resulting in an enhanced network that more precisely models the actual biological regulatory mechanisms. ReNE can automatically import a network layout from the Reactome or KEGG repositories, or work with custom pathways described using a standard OWL/XML data format that the Cytoscape import procedure accepts. Moreover, ReNE allows researchers to merge multiple pathways coming from different sources. The merged network structure is normalized to guarantee a consistent and uniform description of the network nodes and edges and to enrich all integrated data with additional annotations retrieved from genome-wide databases like NCBI, thus producing a pathway fully manageable through the Cytoscape environment. The normalized network is then analyzed to include missing transcription factors, miRNAs, and proteins. The resulting enhanced network is still a fully functional Cytoscape network where each regulatory element (transcription factor, miRNA, gene, protein) and regulatory mechanism (up-regulation/down-regulation) is clearly visually identifiable, thus enabling a better visual understanding of its role and the effect in the network behavior. The enhanced network produced by ReNE is exportable in multiple formats for further analysis via third party applications. ReNE can be freely installed from the Cytoscape App Store (http://apps.cytoscape.org/apps/rene) and the full source code is freely available for download through a SVN repository accessible at http://www.sysbio.polito.it/tools_svn/Bi​oInformatics/Rene/releases/. ReNE enhances a network by only integrating data from public repositories, without any inference or prediction. The reliability of the introduced interactions only depends on the reliability of the source data, which is out of control of ReNe developers

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.National Science Foundation 1916797 David W Ehrhardt, Kenneth D Birnbaum, Seung Yon Rhee; National Science Foundation 2052590 Seung Yon Rhe

    Vision, challenges and opportunities for a plant cell atlas

    Get PDF
    Funding Information: The PCA community-building activities are funded in part by the National Science Foundation grant numbers MCB-1916797 and MCB-2052590, Carnegie Institution for Science, and BASF. We thank Emily Fryer, Nick Melosh, Heather Meyer, Jason Thomas, Terri Tippets, Renate Weizbauer, Zhiyong Wang and Kangmei Zhao for helping with organizing the first work-shop. We thank Emily Fryer and Julie Gosse at the Science Editors Network for developing the PCA website. We are grateful to the first PCA workshop steering committee members Jim Haseloff, David Jackson, Edward Marcotte, John Marioni, Marisa Otegui, Alberto Salleo, Waltraud Schulze, Edgar Spalding, Michael Suss-man, Marja Timmermans and HS Philip Wong for their guidance and support. We thank Rachel Shahan, Shouling Xu, Kevin Cox and Erin Zess for their input in developing the manuscript. Some images in the figures were created with BioRender.com. National Science Foundation- 1916797- David W Ehrhardt, Kenneth D, Birnbaum, Seung Yon Rhee; National Science Foundation- 2052590- Seung Yon Rhee. Funding Information: Industry is another potential source of funding. Over 70% of applied research and development in the US is funded by industry (Khan et al., 2020). A thorough understanding of plant systems is essential for designing effective agro-biotech solutions leading to new crop varieties, and to innovative crop protection products that can leverage sustainable food production. A partnership with the PCA initiative would accelerate development of new solutions for customers of the agbiotech industry. Thus, funding and collaborations, ranging over multiple disciplines and countries, and multiway interactions amongst academia, industry and philanthropy will be essential to realize the vision of the PCA. Publisher Copyright: © Jha et al.With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them.Peer reviewe

    Waltheriones and trypanosoma cruzi – elucidating potential mechanisms of action

    Get PDF
    Natural products, and phytochemicals in particular, constitute a huge potential for drug discovery and medical use against parasitic diseases. Novel drugs and safer and more efficacious treatment options are urgently needed to fight neglected tropical diseases such as Chagas disease, caused by Trypanosoma cruzi. So far, antichagasic drug discovery was marked by the lack of financial resources and restricted by low throughput. Research subsequently fell back on drug repurposing and target-based approaches, which did not translate to new drugs against Chagas disease. Understanding drug action and discovering potential mechanisms of action is vital in finding alternative, safe, and efficacious treatment options. Waltheriones are a group of natural compounds isolated from the plant Waltheria indica, a plant occurring in tropical and subtropical area. Their activity against T. cruzi observed in protozoan phenotypic screens and the high selectivity towards the parasitic cells make the waltheriones very attractive for research, potentially leading to a candidate drug or advancing the knowledge about a novel drug target in T. cruzi. In my Ph.D. thesis, I have investigated drug action of the waltheriones against T. cruzi by using cell biological and molecular approaches. Untargeted exposure metabolomics of extracellular epimastigote T. cruzi with waltherione revealed an accumulation of acylcarnitines, indicating an effect on fatty acid metabolism downstream of carnitine palmitoyltransferase 1 (CPT1). This finding was further investigated using isotopically labelled palmitate and NMR or mass spectrometry. This demonstrated that β-oxidation is functional in the vector form of T. cruzi. However, no effect of waltherione on β-oxidation or TCA metabolites was observed. In vitro drug resistance selection was used as a starting point for finding possible mechanisms of resistance and possible mechanisms of action. Selecting for drug resistance in T. cruzi toward waltheriones proved to be difficult. Waltherione-resistant T. cruzi were generated and analysed with comparative transcriptomics revealing a candidate resistance mutation in a mitoribosomal protein. In conclusion, untargeted exposure metabolomics and comparative transcriptomics point to a mitochondrial involvement in waltherione drug action and a possible drug resistance mechanism. Stage-specific waltherione sensitivity profiles in different protozoan parasites further consolidate the hypothesis that the mode of action of waltheriones against T. cruzi involves interference with mitochondrial metabolism

    Vision, challenges and opportunities for a Plant Cell Atlas

    Get PDF
    With growing populations and pressing environmental problems, future economies will be increasingly plant-based. Now is the time to reimagine plant science as a critical component of fundamental science, agriculture, environmental stewardship, energy, technology and healthcare. This effort requires a conceptual and technological framework to identify and map all cell types, and to comprehensively annotate the localization and organization of molecules at cellular and tissue levels. This framework, called the Plant Cell Atlas (PCA), will be critical for understanding and engineering plant development, physiology and environmental responses. A workshop was convened to discuss the purpose and utility of such an initiative, resulting in a roadmap that acknowledges the current knowledge gaps and technical challenges, and underscores how the PCA initiative can help to overcome them
    corecore