509 research outputs found

    Deep Learning: Our Miraculous Year 1990-1991

    Full text link
    In 2020, we will celebrate that many of the basic ideas behind the deep learning revolution were published three decades ago within fewer than 12 months in our "Annus Mirabilis" or "Miraculous Year" 1990-1991 at TU Munich. Back then, few people were interested, but a quarter century later, neural networks based on these ideas were on over 3 billion devices such as smartphones, and used many billions of times per day, consuming a significant fraction of the world's compute.Comment: 37 pages, 188 references, based on work of 4 Oct 201

    Random deep neural networks are biased towards simple functions

    Full text link
    We prove that the binary classifiers of bit strings generated by random wide deep neural networks with ReLU activation function are biased towards simple functions. The simplicity is captured by the following two properties. For any given input bit string, the average Hamming distance of the closest input bit string with a different classification is at least sqrt(n / (2{\pi} log n)), where n is the length of the string. Moreover, if the bits of the initial string are flipped randomly, the average number of flips required to change the classification grows linearly with n. These results are confirmed by numerical experiments on deep neural networks with two hidden layers, and settle the conjecture stating that random deep neural networks are biased towards simple functions. This conjecture was proposed and numerically explored in [Valle P\'erez et al., ICLR 2019] to explain the unreasonably good generalization properties of deep learning algorithms. The probability distribution of the functions generated by random deep neural networks is a good choice for the prior probability distribution in the PAC-Bayesian generalization bounds. Our results constitute a fundamental step forward in the characterization of this distribution, therefore contributing to the understanding of the generalization properties of deep learning algorithms

    Search Tree Pruning for Progressive Neural Architecture Search

    Get PDF
    Our neural architecture search algorithm progressively searches a tree of neural network architectures. Child nodes are created by inserting new layers determined by a transition graph into a parent network up to a maximum depth and pruned when performance is worse than its parent. This increases efficiency but makes the algorithm greedy. Simpler networks are successfully found before more complex ones that can achieve benchmark performance similar to other top-performing networks

    Minimum Description Length Hopfield Networks

    Full text link
    Associative memory architectures are designed for memorization but also offer, through their retrieval method, a form of generalization to unseen inputs: stored memories can be seen as prototypes from this point of view. Focusing on Modern Hopfield Networks (MHN), we show that a large memorization capacity undermines the generalization opportunity. We offer a solution to better optimize this tradeoff. It relies on Minimum Description Length (MDL) to determine during training which memories to store, as well as how many of them.Comment: 4 pages, Associative Memory & Hopfield Networks Workshop at NeurIPS202
    corecore