493 research outputs found

    Spatio-temporal patterns of human mobility from geo-social networks for urban computing: Analysis, models & applications

    Get PDF
    The availability of rich information about fine-grained user mobility in urban environments from increasingly geographically-aware social networking services and the rapid development of machine learning applications greatly facilitate the investigation of urban issues. In this setting, urban computing emerges intending to tackle a variety of challenges faced by cities nowadays and to offer promising approaches to improving our living environment. Leveraging massive amounts of data from geo-social networks with unprecedented richness, we show how to devise novel algorithmic techniques to reveal underlying urban mobility patterns for better policy-making and more efficient mobile applications in this dissertation. Building upon the foundation of existing research efforts in urban computing field and basic machine learning techniques, in this dissertation, we propose a general framework of urban computing with geo-social network data and develop novel algorithms tailored for three urban computing tasks. We begin by exploring how the transition data recording human movements between urban venues from geo-social networks can be aggregated and utilised to detect spatio-temporal changes of local graphs in urban areas. We further explore how this can be used as a proxy to track and predict socio-economic deprivation changes as government financial effort is put in developing areas by supervised machine learning methods. We then study how to extract latent patterns from collective user-venue interactions with the help of a spatio-temporal aware topic modeling approach for the benefit of urban infrastructure planning. After that, we propose a model to detect the gap between user-side demand and venue-side supply levels for certain types of services in urban environments to suggest further policymaking and investment optimisation. Finally, we address a mobility prediction task, the application aim of which is to recommend new places to explore in the city for mobile users. To this end, we develop a deep learning framework that integrates memory network and topic modeling techniques. Extensive experiments indicate that the proposed architecture can enhance the prediction performance in various recommendation scenarios with high interpretability. All in all, the insights drawn and the techniques developed in this dissertation make a substantial step in addressing issues in cities and open the door to future possibilities in the promising urban computing area

    Topic-enhanced memory networks for personalised point-of-interest recommendation

    Get PDF
    Point-of-Interest (POI) recommender systems play a vital role in people's lives by recommending unexplored POIs to users and have drawn extensive attention from both academia and industry. Despite their value, however, they still suffer from the challenges of capturing complicated user preferences and fine-grained user-POI relationship for spatio-temporal sensitive POI recommendation. Existing recommendation algorithms, including both shallow and deep approaches, usually embed the visiting records of a user into a single latent vector to model user preferences: this has limited power of representation and interpretability. In this paper, we propose a novel topic-enhanced memory network (TEMN), a deep architecture to integrate the topic model and memory network capitalising on the strengths of both the global structure of latent patterns and local neighbourhood-based features in a nonlinear fashion. We further incorporate a geographical module to exploit user-specific spatial preference and POI-specific spatial influence to enhance recommendations. The proposed unified hybrid model is widely applicable to various POI recommendation scenarios. Extensive experiments on real-world WeChat datasets demonstrate its effectiveness (improvement ratio of 3.25% and 29.95% for context-aware and sequential recommendation, respectively). Also, qualitative analysis of the attention weights and topic modeling provides insight into the model's recommendation process and results.China Scholarship Council and Cambridge Trus

    Modeling Taxi Drivers' Behaviour for the Next Destination Prediction

    Full text link
    In this paper, we study how to model taxi drivers' behaviour and geographical information for an interesting and challenging task: the next destination prediction in a taxi journey. Predicting the next location is a well studied problem in human mobility, which finds several applications in real-world scenarios, from optimizing the efficiency of electronic dispatching systems to predicting and reducing the traffic jam. This task is normally modeled as a multiclass classification problem, where the goal is to select, among a set of already known locations, the next taxi destination. We present a Recurrent Neural Network (RNN) approach that models the taxi drivers' behaviour and encodes the semantics of visited locations by using geographical information from Location-Based Social Networks (LBSNs). In particular, RNNs are trained to predict the exact coordinates of the next destination, overcoming the problem of producing, in output, a limited set of locations, seen during the training phase. The proposed approach was tested on the ECML/PKDD Discovery Challenge 2015 dataset - based on the city of Porto -, obtaining better results with respect to the competition winner, whilst using less information, and on Manhattan and San Francisco datasets.Comment: preprint version of a paper submitted to IEEE Transactions on Intelligent Transportation System

    Hierarchical Transformer with Spatio-Temporal Context Aggregation for Next Point-of-Interest Recommendation

    Full text link
    Next point-of-interest (POI) recommendation is a critical task in location-based social networks, yet remains challenging due to a high degree of variation and personalization exhibited in user movements. In this work, we explore the latent hierarchical structure composed of multi-granularity short-term structural patterns in user check-in sequences. We propose a Spatio-Temporal context AggRegated Hierarchical Transformer (STAR-HiT) for next POI recommendation, which employs stacked hierarchical encoders to recursively encode the spatio-temporal context and explicitly locate subsequences of different granularities. More specifically, in each encoder, the global attention layer captures the spatio-temporal context of the sequence, while the local attention layer performed within each subsequence enhances subsequence modeling using the local context. The sequence partition layer infers positions and lengths of subsequences from the global context adaptively, such that semantics in subsequences can be well preserved. Finally, the subsequence aggregation layer fuses representations within each subsequence to form the corresponding subsequence representation, thereby generating a new sequence of higher-level granularity. The stacking of encoders captures the latent hierarchical structure of the check-in sequence, which is used to predict the next visiting POI. Extensive experiments on three public datasets demonstrate that the proposed model achieves superior performance whilst providing explanations for recommendations. Codes are available at https://github.com/JennyXieJiayi/STAR-HiT
    • …
    corecore