11,478 research outputs found

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Mapping Big Data into Knowledge Space with Cognitive Cyber-Infrastructure

    Full text link
    Big data research has attracted great attention in science, technology, industry and society. It is developing with the evolving scientific paradigm, the fourth industrial revolution, and the transformational innovation of technologies. However, its nature and fundamental challenge have not been recognized, and its own methodology has not been formed. This paper explores and answers the following questions: What is big data? What are the basic methods for representing, managing and analyzing big data? What is the relationship between big data and knowledge? Can we find a mapping from big data into knowledge space? What kind of infrastructure is required to support not only big data management and analysis but also knowledge discovery, sharing and management? What is the relationship between big data and science paradigm? What is the nature and fundamental challenge of big data computing? A multi-dimensional perspective is presented toward a methodology of big data computing.Comment: 59 page

    Multi-Instance Multi-Label Learning

    Get PDF
    In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the MimlBoost and MimlSvm algorithms based on a simple degeneration strategy, and experiments show that solving problems involving complicated objects with multiple semantic meanings in the MIML framework can lead to good performance. Considering that the degeneration process may lose information, we propose the D-MimlSvm algorithm which tackles MIML problems directly in a regularization framework. Moreover, we show that even when we do not have access to the real objects and thus cannot capture more information from real objects by using the MIML representation, MIML is still useful. We propose the InsDif and SubCod algorithms. InsDif works by transforming single-instances into the MIML representation for learning, while SubCod works by transforming single-label examples into the MIML representation for learning. Experiments show that in some tasks they are able to achieve better performance than learning the single-instances or single-label examples directly.Comment: 64 pages, 10 figures; Artificial Intelligence, 201

    Exploiting transitivity in probabilistic models for ontology learning

    Get PDF
    Nel natural language processing (NLP) catturare il significato delle parole è una delle sfide a cui i ricercatori sono largamente interessati. Le reti semantiche di parole o concetti, che strutturano in modo formale la conoscenza, sono largamente utilizzate in molte applicazioni. Per essere effettivamente utilizzate, in particolare nei metodi automatici di apprendimento, queste reti semantiche devono essere di grandi dimensioni o almeno strutturare conoscenza di domini molto specifici. Il nostro principale obiettivo è contribuire alla ricerca di metodi di apprendimento di reti semantiche concentrandosi in differenti aspetti. Proponiamo un nuovo modello probabilistico per creare o estendere reti semantiche che prende contemporaneamente in considerazine sia le evidenze estratte nel corpus sia la struttura della rete semantiche considerata nel training. In particolare il nostro modello durante l'apprendimento sfrutta le proprietà strutturali, come la transitività, delle relazioni che legano i nodi della nostra rete. La formulazione della probabilità che una data relazione tra due istanze appartiene alla rete semantica dipenderà da due probabilità: la probabilità diretta stimata delle evidenze del corpus e la probabilità indotta che deriva delle proprietà strutturali della relazione presa in considerazione. Il modello che proponiano introduce alcune innovazioni nella stima di queste probabilità. Proponiamo anche un modello che può essere usato per apprendere conoscenza in differenti domini di interesse senza un grande effort aggiuntivo per l'adattamento. In particolare, nell'approccio che proponiamo, si apprende un modello da un dominio generico e poi si sfrutta tale modello per estrarre nuova conoscenza in un dominio specifico. Infine proponiamo Semantic Turkey Ontology Learner (ST-OL): un sistema di apprendimento di ontologie incrementale. Mediante ontology editor, ST-OL fornisce un efficiente modo di interagire con l'utente finale e inserire le decisioni di tale utente nel loop dell'apprendimento. Inoltre il modello probabilistico integrato in ST-OL permette di sfruttare la transitività delle relazioni per indurre migliori modelli di estrazione. Mediante degli esperimenti dimostriamo che tutti i modelli che proponiamo danno un reale contributo ai differenti task che consideriamo migliorando le prestazioni.Capturing word meaning is one of the challenges of natural language processing (NLP). Formal models of meaning such as semantic networks of words or concepts are knowledge repositories used in a variety of applications. To be effectively used, these networks have to be large or, at least, adapted to specific domains. Our main goal is to contribute practically to the research on semantic networks learning models by covering different aspects of the task. We propose a novel probabilistic model for learning semantic networks that expands existing semantic networks taking into accounts both corpus-extracted evidences and the structure of the generated semantic networks. The model exploits structural properties of target relations such as transitivity during learning. The probability for a given relation instance to belong to the semantic networks of words depends both on its direct probability and on the induced probability derived from the structural properties of the target relation. Our model presents some innovations in estimating these probabilities. We also propose a model that can be used in different specific knowledge domains with a small effort for its adaptation. In this approach a model is learned from a generic domain that can be exploited to extract new informations in a specific domain. Finally, we propose an incremental ontology learning system: Semantic Turkey Ontology Learner (ST-OL). ST-OL addresses two principal issues. The first issue is an efficient way to interact with final users and, then, to put the final users decisions in the learning loop. We obtain this positive interaction using an ontology editor. The second issue is a probabilistic learning semantic networks of words model that exploits transitive relations for inducing better extraction models. ST-OL provides a graphical user interface and a human- computer interaction workflow supporting the incremental leaning loop of our learning semantic networks of words

    Data Mining Techniques to Understand Textual Data

    Get PDF
    More than ever, information delivery online and storage heavily rely on text. Billions of texts are produced every day in the form of documents, news, logs, search queries, ad keywords, tags, tweets, messenger conversations, social network posts, etc. Text understanding is a fundamental and essential task involving broad research topics, and contributes to many applications in the areas text summarization, search engine, recommendation systems, online advertising, conversational bot and so on. However, understanding text for computers is never a trivial task, especially for noisy and ambiguous text such as logs, search queries. This dissertation mainly focuses on textual understanding tasks derived from the two domains, i.e., disaster management and IT service management that mainly utilizing textual data as an information carrier. Improving situation awareness in disaster management and alleviating human efforts involved in IT service management dictates more intelligent and efficient solutions to understand the textual data acting as the main information carrier in the two domains. From the perspective of data mining, four directions are identified: (1) Intelligently generate a storyline summarizing the evolution of a hurricane from relevant online corpus; (2) Automatically recommending resolutions according to the textual symptom description in a ticket; (3) Gradually adapting the resolution recommendation system for time correlated features derived from text; (4) Efficiently learning distributed representation for short and lousy ticket symptom descriptions and resolutions. Provided with different types of textual data, data mining techniques proposed in those four research directions successfully address our tasks to understand and extract valuable knowledge from those textual data. My dissertation will address the research topics outlined above. Concretely, I will focus on designing and developing data mining methodologies to better understand textual information, including (1) a storyline generation method for efficient summarization of natural hurricanes based on crawled online corpus; (2) a recommendation framework for automated ticket resolution in IT service management; (3) an adaptive recommendation system on time-varying temporal correlated features derived from text; (4) a deep neural ranking model not only successfully recommending resolutions but also efficiently outputting distributed representation for ticket descriptions and resolutions

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollständig und enthalten auch ungültige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die Erklärbarkeit und Verständlichkeit von Wissensgraphinhalten für Nutzer. In Anwendungen ist darüber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen Entitäten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch für tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz über dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit Erklärungen für Nutzer. Die Dissertation umfasst folgende Beiträge: Insbesondere leistet die Dissertation folgende Beiträge: • Zur Wissensgraph-Erweiterung präsentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch Hinzufügen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit Lücken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche Erklärungen liefert. • Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen Repräsentationen für fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken für die Regelqualität verwendet. Experimente zeigen, dass RuLES die Qualität der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. • Zur Unterstützung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von Erklärungen für Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen für Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und Qualität der entdeckten Erklärungen deutlich verbessert. Die generierten unterstützen Erklärungen unterstütze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. • Zur Unterstützung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen Entitäts-Clustern mit Erklärungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-Erklärung besteht aus einer Kombination von Relationen zwischen den Entitäten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- Qualität und die Cluster-Erklärbarkeit durch iteratives Verschränken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher Qualität berechnet und dass die Cluster-Erklärungen für Nutzer informativ sind
    • …
    corecore