46,062 research outputs found

    A Framework to Discover Emerging Patterns for Application in Microarray Data

    Get PDF
    Various supervised learning and gene selection methods have been used for cancer diagnosis. Most of these methods do not consider interactions between genes, although this might be interesting biologically and improve classification accuracy. Here we introduce a new CART-based method to discover emerging patterns. Emerging patterns are structures of the form (X1>a1)AND(X2<a2) that have differing frequencies in the considered classes. Interaction structures of this kind are of great interest in cancer research. Moreover, they can be used to define new variables for classification. Using simulated data sets, we show that our method allows the identification of emerging patterns with high efficiency. We also perform classification using two publicly available data sets (leukemia and colon cancer). For each data set, the method allows efficient classification as well as the identification of interesting patterns

    Identification of Interaction Patterns and Classification with Applications to Microarray Data

    Get PDF
    Emerging patterns represent a class of interaction structures which has been recently proposed as a tool in data mining. In this paper, a new and more general definition refering to underlying probabilities is proposed. The defined interaction patterns carry information about the relevance of combinations of variables for distinguishing between classes. Since they are formally quite similar to the leaves of a classification tree, we propose a fast and simple method which is based on the CART algorithm to find the corresponding empirical patterns in data sets. In simulations, it can be shown that the method is quite effective in identifying patterns. In addition, the detected patterns can be used to define new variables for classification. Thus, we propose a simple scheme to use the patterns to improve the performance of classification procedures. The method may also be seen as a scheme to improve the performance of CARTs concerning the identification of interaction patterns as well as the accuracy of prediction

    A Constraint Programming Approach for Mining Sequential Patterns in a Sequence Database

    Full text link
    Constraint-based pattern discovery is at the core of numerous data mining tasks. Patterns are extracted with respect to a given set of constraints (frequency, closedness, size, etc). In the context of sequential pattern mining, a large number of devoted techniques have been developed for solving particular classes of constraints. The aim of this paper is to investigate the use of Constraint Programming (CP) to model and mine sequential patterns in a sequence database. Our CP approach offers a natural way to simultaneously combine in a same framework a large set of constraints coming from various origins. Experiments show the feasibility and the interest of our approach

    Discovering transcriptional modules by Bayesian data integration

    Get PDF
    Motivation: We present a method for directly inferring transcriptional modules (TMs) by integrating gene expression and transcription factor binding (ChIP-chip) data. Our model extends a hierarchical Dirichlet process mixture model to allow data fusion on a gene-by-gene basis. This encodes the intuition that co-expression and co-regulation are not necessarily equivalent and hence we do not expect all genes to group similarly in both datasets. In particular, it allows us to identify the subset of genes that share the same structure of transcriptional modules in both datasets. Results: We find that by working on a gene-by-gene basis, our model is able to extract clusters with greater functional coherence than existing methods. By combining gene expression and transcription factor binding (ChIP-chip) data in this way, we are better able to determine the groups of genes that are most likely to represent underlying TMs

    Discovering bipartite substructure in directed networks

    Get PDF
    Bipartivity is an important network concept that can be applied to nodes, edges and communities. Here we focus on directed networks and look for subnetworks made up of two distinct groups of nodes, connected by “one-way” links. We show that a spectral approach can be used to find hidden substructure of this form. Theoretical support is given for the idealised case where there is limited overlap between subnetworks. Numerical experiments show that the approach is robust to spurious and missing edges. A key application of this work is in the analysis of high-throughput gene expression data, and we give an example where a biologically meaningful directed bipartite subnetwork is found from a cancer microarray dataset

    Trajectory-based differential expression analysis for single-cell sequencing data

    Get PDF
    Trajectory inference has radically enhanced single-cell RNA-seq research by enabling the study of dynamic changes in gene expression. Downstream of trajectory inference, it is vital to discover genes that are (i) associated with the lineages in the trajectory, or (ii) differentially expressed between lineages, to illuminate the underlying biological processes. Current data analysis procedures, however, either fail to exploit the continuous resolution provided by trajectory inference, or fail to pinpoint the exact types of differential expression. We introduce tradeSeq, a powerful generalized additive model framework based on the negative binomial distribution that allows flexible inference of both within-lineage and between-lineage differential expression. By incorporating observation-level weights, the model additionally allows to account for zero inflation. We evaluate the method on simulated datasets and on real datasets from droplet-based and full-length protocols, and show that it yields biological insights through a clear interpretation of the data. Downstream of trajectory inference for cell lineages based on scRNA-seq data, differential expression analysis yields insight into biological processes. Here, Van den Berge et al. develop tradeSeq, a framework for the inference of within and between-lineage differential expression, based on negative binomial generalized additive models

    Comparing large covariance matrices under weak conditions on the dependence structure and its application to gene clustering

    Get PDF
    Comparing large covariance matrices has important applications in modern genomics, where scientists are often interested in understanding whether relationships (e.g., dependencies or co-regulations) among a large number of genes vary between different biological states. We propose a computationally fast procedure for testing the equality of two large covariance matrices when the dimensions of the covariance matrices are much larger than the sample sizes. A distinguishing feature of the new procedure is that it imposes no structural assumptions on the unknown covariance matrices. Hence the test is robust with respect to various complex dependence structures that frequently arise in genomics. We prove that the proposed procedure is asymptotically valid under weak moment conditions. As an interesting application, we derive a new gene clustering algorithm which shares the same nice property of avoiding restrictive structural assumptions for high-dimensional genomics data. Using an asthma gene expression dataset, we illustrate how the new test helps compare the covariance matrices of the genes across different gene sets/pathways between the disease group and the control group, and how the gene clustering algorithm provides new insights on the way gene clustering patterns differ between the two groups. The proposed methods have been implemented in an R-package HDtest and is available on CRAN.Comment: The original title dated back to May 2015 is "Bootstrap Tests on High Dimensional Covariance Matrices with Applications to Understanding Gene Clustering
    corecore