447 research outputs found

    Mining Novel Multivariate Relationships in Time Series Data Using Correlation Networks

    Full text link
    In many domains, there is significant interest in capturing novel relationships between time series that represent activities recorded at different nodes of a highly complex system. In this paper, we introduce multipoles, a novel class of linear relationships between more than two time series. A multipole is a set of time series that have strong linear dependence among themselves, with the requirement that each time series makes a significant contribution to the linear dependence. We demonstrate that most interesting multipoles can be identified as cliques of negative correlations in a correlation network. Such cliques are typically rare in a real-world correlation network, which allows us to find almost all multipoles efficiently using a clique-enumeration approach. Using our proposed framework, we demonstrate the utility of multipoles in discovering new physical phenomena in two scientific domains: climate science and neuroscience. In particular, we discovered several multipole relationships that are reproducible in multiple other independent datasets and lead to novel domain insights.Comment: This is the accepted version of article submitted to IEEE Transactions on Knowledge and Data Engineering 201

    Mechanisms in Dynamically Complex Systems

    Get PDF
    In recent debates mechanisms are often discussed in the context of ‘complex systems’ which are understood as having a complicated compositional structure. I want to draw the attention to another, radically different kind of complex system, in fact one that many scientists regard as the only genuine kind of complex system. Instead of being compositionally complex these systems rather exhibit highly non-trivial dynamical patterns on the basis of structurally simple arrangements of large numbers of non-linearly interacting constituents. The characteristic dynamical patterns in what I call “dynamically complex systems” arise from the interaction of the system’s parts largely irrespective of many properties of these parts. Dynamically complex systems can exhibit surprising statistical characteristics, the robustness of which calls for an explanation in terms of underlying generating mechanisms. However, I want to argue, dynamically complex systems are not sufficiently covered by the available conceptions of mechanisms. I will explore how the notion of a mechanism has to be modified to accommodate this case. Moreover, I will show under which conditions the widespread, if not inflationary talk about mechanisms in (dynamically) complex systems stretches the notion of mechanisms beyond its reasonable limits and is no longer legitimate

    NASA Thesaurus supplement: A four part cumulative supplement to the 1988 edition of the NASA Thesaurus (supplement 3)

    Get PDF
    The four-part cumulative supplement to the 1988 edition of the NASA Thesaurus includes the Hierarchical Listing (Part 1), Access Vocabulary (Part 2), Definitions (Part 3), and Changes (Part 4). The semiannual supplement gives complete hierarchies and accepted upper/lowercase forms for new terms

    Opening a new window to other worlds with spectropolarimetry

    Get PDF
    A high level of diversity has already been observed among the planets of our own Solar System. As such, one expects extrasolar planets to present a wide range of distinctive features, therefore the characterisation of Earth- and super Earth-like planets is becoming of key importance in scientific research. The SEARCH (Spectropolarimetric Exoplanet AtmospheRe CHaracerisation) mission proposal of this paper represents one possible approach to realising these objectives. The mission goals of SEARCH include the detailed characterisation of a wide variety of exoplanets, ranging from terrestrial planets to gas giants. More specifically, SEARCH will determine atmospheric properties such as cloud coverage, surface pressure and atmospheric composition, and may also be capable of identifying basic surface features. To resolve a planet with a semi major axis of down to 1.4AU and 30pc distant SEARCH will have a mirror system consisting of two segments, with elliptical rim, cut out of a parabolic mirror. This will yield an effective diameter of 9 meters along one axis. A phase mask coronagraph along with an integral spectrograph will be used to overcome the contrast ratio of star to planet light. Such a mission would provide invaluable data on the diversity present in extrasolar planetary systems and much more could be learned from the similarities and differences compared to our own Solar System. This would allow our theories of planetary formation, atmospheric accretion and evolution to be tested, and our understanding of regions such as the outer limit of the Habitable Zone to be further improved.Comment: 23 pages, accepted for publication in Experimental Astronom
    • 

    corecore