413 research outputs found

    Drug interaction prediction using ontology-driven hypothetical assertion framework for pathway generation followed by numerical simulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In accordance with the increasing amount of information concerning individual differences in drug response and molecular interaction, the role of <it>in silico </it>prediction of drug interaction on the pathway level is becoming more and more important. However, in view of the interferences for the identification of new drug interactions, most conventional information models of a biological pathway would have limitations. As a reflection of real world biological events triggered by a stimulus, it is important to facilitate the incorporation of known molecular events for inferring (unknown) possible pathways and hypothetic drug interactions. Here, we propose a new Ontology-Driven Hypothetic Assertion (OHA) framework including pathway generation, drug interaction detection, simulation model generation, numerical simulation, and hypothetic assertion. Potential drug interactions are detected from drug metabolic pathways dynamically generated by molecular events triggered after the administration of certain drugs. Numerical simulation enables to estimate the degree of side effects caused by the predicted drug interactions. New hypothetic assertions of the potential drug interactions and simulation are deduced from the Drug Interaction Ontology (DIO) written in Web Ontology Language (OWL).</p> <p>Results</p> <p>The concept of the Ontology-Driven Hypothetic Assertion (OHA) framework was demonstrated with known interactions between irinotecan (CPT-11) and ketoconazole. Four drug interactions that involved cytochrome p450 (CYP3A4) and albumin as potential drug interaction proteins were automatically detected from Drug Interaction Ontology (DIO). The effect of the two interactions involving CYP3A4 were quantitatively evaluated with numerical simulation. The co-administration of ketoconazole may increase AUC and Cmax of SN-38(active metabolite of irinotecan) to 108% and 105%, respectively. We also estimates the potential effects of genetic variations: the AUC and Cmax of SN-38 may increase to 208% and 165% respectively with the genetic variation UGT1A1*28/*28 which reduces the expression of UGT1A1 down to 30%.</p> <p>Conclusion</p> <p>These results demonstrate that the Ontology-Driven Hypothetic Assertion framework is a promising approach for <it>in silico </it>prediction of drug interactions. The following future researches for the <it>in silico </it>prediction of individual differences in the response to the drug and drug interactions after the administration of multiple drugs: expansion of the Drug Interaction Ontology for other drugs, and incorporation of virtual population model for genetic variation analysis, as well as refinement of the pathway generation rules, the drug interaction detection rules, and the numerical simulation models.</p

    Spatial Crowding and Confinement Effects on Bursty Gene Expression

    Get PDF
    Synthetic biology and genetic engineering are valuable tools in the development of new, sustainable energy generation technologies. The characterization of stochastic gene expression is vital to the efficient application of genetic engineering techniques. Transcriptional bursting, in which periods of high expression are punctuated by periods of no expression, is extensively observed in gene expression. While various molecular mechanisms have been hypothesized to be responsible for transcriptional bursting, spatial considerations have largely been neglected. This work uses computational modeling to examine in detail the influence of spatial factors such as macromolecular crowding and confinement on gene expression. In the first part of the thesis, cell-free expression chambers containing E. coli extract were fabricated and analyzed under varying confinement scenarios to explore how resource sharing influences gene expression. Interestingly, fluorescence measurements reveal that expression burst size, but not burst frequency, is highly sensitive to changes in chamber volume and the size of the shared resource pool. Computational models reveal that the timing of initial transcriptional activity strongly influences the acquisition of resources, such that mRNA transcripts produced early in time dominate the burst behavior of a chamber. In the second part of the thesis, computational models were developed to study the effects of macromolecular crowding and confinement on transcriptional bursting. Spatially resolved gene expression models reveal significant changes in fluctuations and noise in mRNA behavior compared with well-mixed systems. The spatial results were compared to two- and three-state models to determine whether the effects of crowding and confinement could be adequately captured using simpler models. The comparisons reveal that the two- and three-state models, which do not explicitly incorporate spatial features, are unable to capture features of the noise of crowded and confined systems due to differences in the distribution of times between transcriptional events. The work presented here reveals the importance of spatial influences when analyzing gene expression and transcriptional bursting in cells. Future work will expand on the role of resource sharing on gene expression through spatial considerations, as well as explore the effects of crowding on more complex gene expression systems

    High-Performance Modelling and Simulation for Big Data Applications

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1406 “High-Performance Modelling and Simulation for Big Data Applications (cHiPSet)“ project. Long considered important pillars of the scientific method, Modelling and Simulation have evolved from traditional discrete numerical methods to complex data-intensive continuous analytical optimisations. Resolution, scale, and accuracy have become essential to predict and analyse natural and complex systems in science and engineering. When their level of abstraction raises to have a better discernment of the domain at hand, their representation gets increasingly demanding for computational and data resources. On the other hand, High Performance Computing typically entails the effective use of parallel and distributed processing units coupled with efficient storage, communication and visualisation systems to underpin complex data-intensive applications in distinct scientific and technical domains. It is then arguably required to have a seamless interaction of High Performance Computing with Modelling and Simulation in order to store, compute, analyse, and visualise large data sets in science and engineering. Funded by the European Commission, cHiPSet has provided a dynamic trans-European forum for their members and distinguished guests to openly discuss novel perspectives and topics of interests for these two communities. This cHiPSet compendium presents a set of selected case studies related to healthcare, biological data, computational advertising, multimedia, finance, bioinformatics, and telecommunications

    Genomic Methods for Studying the Post-Translational Regulation of Transcription Factors

    Get PDF
    The spatiotemporal coordination of gene expression is a fundamental process in cellular biology. Gene expression is regulated, in large part, by sequence-specific transcription factors that bind to DNA regions in the proximity of each target gene. Transcription factor activity and specificity are, in turn, regulated post-translationally by protein-modifying enzymes. High-throughput methods exist to probe specific steps of this process, such as protein-protein and protein-DNA interactions, but few computational tools exist to integrate this information in a principled, model-oriented manner. In this work, I develop several computational tools for studying the functional implications of transcription factor modification. I establish the first publicly accessible database for known and predicted regulatory circuits that encompass modifying enzymes, transcription factors, and transcriptional targets. I also develop a model-based method for integrating heterogeneous genomic and proteomic data for the inference of modification-dependent transcriptional regulatory networks. The model-based method is thoroughly validated as a reliable and accurate computational genomic tool. Additionally, I propose and demonstrate fundamental improvements to computational proteomic methods for identifying modified protein forms. In summary, this work contributes critical methodological advances to the field of regulatory network inference
    • …
    corecore