2,436 research outputs found

    Would you like to add a weight after this blood pressure, doctor? Discovery of potentially actionable associations between the provision of multiple screens in primary care

    Get PDF
    The CPCSSN was funded through a contribution agreement with the Public Health Agency of Canada.Rationale, aims, and objective:  Guidelines recommend screening for risk factors associated with chronic diseases but current electronic prompts have limited effects. Our objective was to discover and rank associations between the presence of screens to plan more efficient prompts in primary care. Methods:  Risk factors with the greatest impact on chronic diseases are associated with blood pressure, body mass index, waist circumference, glycaemic and lipid levels, smoking, alcohol use, diet, and exercise. We looked for associations between the presence of screens for these in electronic medical records. We used association rule mining to describe relationships among items, factor analysis to find latent categories, and Cronbach α to quantify consistency within latent categories. Results:  Data from 92 140 patients in or around Toronto, Ontario, were included. We found positive correlations (lift >1) between the presence of all screens. The presence of any screen was associated with confidence greater than 80% that other data on items with high prevalence (blood pressure, glycaemic and lipid levels, or smoking) would also be present. A cluster of rules predicting the presence of blood pressure were ranked highest using measures of interestingness such as standardized lift. We found 3 latent categories using factor analysis; these were laboratory tests, vital signs, and lifestyle factors; Cronbach α ranged between .58 for lifestyle factors and .88 for laboratory tests. Conclusions:  Associations between the provision of important screens can be discovered and ranked. Rules with promising combinations of associated screens could be used to implement data driven alerts.Publisher PDFPeer reviewe

    A survey on utilization of data mining approaches for dermatological (skin) diseases prediction

    Get PDF
    Due to recent technology advances, large volumes of medical data is obtained. These data contain valuable information. Therefore data mining techniques can be used to extract useful patterns. This paper is intended to introduce data mining and its various techniques and a survey of the available literature on medical data mining. We emphasize mainly on the application of data mining on skin diseases. A categorization has been provided based on the different data mining techniques. The utility of the various data mining methodologies is highlighted. Generally association mining is suitable for extracting rules. It has been used especially in cancer diagnosis. Classification is a robust method in medical mining. In this paper, we have summarized the different uses of classification in dermatology. It is one of the most important methods for diagnosis of erythemato-squamous diseases. There are different methods like Neural Networks, Genetic Algorithms and fuzzy classifiaction in this topic. Clustering is a useful method in medical images mining. The purpose of clustering techniques is to find a structure for the given data by finding similarities between data according to data characteristics. Clustering has some applications in dermatology. Besides introducing different mining methods, we have investigated some challenges which exist in mining skin data

    Health history pattern extraction from textual medical records

    Get PDF
    Extracting patterns from medical records using temporal data mining techniques

    Effectiveness of Social Media Community Using Optimized Clustering Algorithm

    Get PDF
    Now-a-days social media is used to the introduce new issues and discussion on social media. More number of users participates in the discussion via social media. Different users belong to different kind of groups. Positive and negative comments will be posted by user and they will participate in discussion. Here we proposed system to group different kind of users and system specifies from which category they belong to. For example film industry, politician etc. Once the social media data such as a user messages are parsed and network relationships are identified, data mining techniques can be applied to group of different types of communities. We used K-Means clustering algorithm to cluster data. In this system we detect communities by the clustering messages from large streams of social data. Our proposed algorithm gives better a clustering result and provides a novel use-case of grouping user communities based on their activities. This application is used to the identify group of people who viewed the post and commented on the post. This helps to categorize the users

    Big data analytics for preventive medicine

    Get PDF
    © 2019, Springer-Verlag London Ltd., part of Springer Nature. Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations

    Data mining techniques for complex application domains

    Get PDF
    The emergence of advanced communication techniques has increased availability of large collection of data in electronic form in a number of application domains including healthcare, e- business, and e-learning. Everyday a large amount of records are stored electronically. However, finding useful information from such a large data collection is a challenging issue. Data mining technology aims automatically extracting hidden knowledge from large data repositories exploiting sophisticated algorithms. The hidden knowledge in the electronic data may be potentially utilized to facilitate the procedures, productivity, and reliability of several application domains. The PhD activity has been focused on novel and effective data mining approaches to tackle the complex data coming from two main application domains: Healthcare data analysis and Textual data analysis. The research activity, in the context of healthcare data, addressed the application of different data mining techniques to discover valuable knowledge from real exam-log data of patients. In particular, efforts have been devoted to the extraction of medical pathways, which can be exploited to analyze the actual treatments followed by patients. The derived knowledge not only provides useful information to deal with the treatment procedures but may also play an important role in future predictions of potential patient risks associated with medical treatments. The research effort in textual data analysis is twofold. On the one hand, a novel approach to discovery of succinct summaries of large document collections has been proposed. On the other hand, the suitability of an established descriptive data mining to support domain experts in making decisions has been investigated. Both research activities are focused on adopting widely exploratory data mining techniques to textual data analysis, which require overcoming intrinsic limitations for traditional algorithms for handling textual documents efficiently and effectively

    Discovering the Symptom Patterns of COVID-19 from Recovered and Deceased Patients Using Apriori Association Rule Mining

    Full text link
    The COVID-19 pandemic has a devastating impact globally, claiming millions of lives and causing significant social and economic disruptions. In order to optimize decision-making and allocate limited resources, it is essential to identify COVID-19 symptoms and determine the severity of each case. Machine learning algorithms offer a potent tool in the medical field, particularly in mining clinical datasets for useful information and guiding scientific decisions. Association rule mining is a machine learning technique for extracting hidden patterns from data. This paper presents an application of association rule mining based Apriori algorithm to discover symptom patterns from COVID-19 patients. The study, using 2875 records of patient, identified the most common symptoms as apnea (72%), cough (64%), fever (59%), weakness (18%), myalgia (14.5%), and sore throat (12%). The proposed method provides clinicians with valuable insight into disease that can assist them in managing and treating it effectively

    New Approach for Market Intelligence Using Artificial and Computational Intelligence

    Get PDF
    Small and medium sized retailers are central to the private sector and a vital contributor to economic growth, but often they face enormous challenges in unleashing their full potential. Financial pitfalls, lack of adequate access to markets, and difficulties in exploiting technology have prevented them from achieving optimal productivity. Market Intelligence (MI) is the knowledge extracted from numerous internal and external data sources, aimed at providing a holistic view of the state of the market and influence marketing related decision-making processes in real-time. A related, burgeoning phenomenon and crucial topic in the field of marketing is Artificial Intelligence (AI) that entails fundamental changes to the skillssets marketers require. A vast amount of knowledge is stored in retailers’ point-of-sales databases. The format of this data often makes the knowledge they store hard to access and identify. As a powerful AI technique, Association Rules Mining helps to identify frequently associated patterns stored in large databases to predict customers’ shopping journeys. Consequently, the method has emerged as the key driver of cross-selling and upselling in the retail industry. At the core of this approach is the Market Basket Analysis that captures knowledge from heterogeneous customer shopping patterns and examines the effects of marketing initiatives. Apriori, that enumerates frequent itemsets purchased together (as market baskets), is the central algorithm in the analysis process. Problems occur, as Apriori lacks computational speed and has weaknesses in providing intelligent decision support. With the growth of simultaneous database scans, the computation cost increases and results in dramatically decreasing performance. Moreover, there are shortages in decision support, especially in the methods of finding rarely occurring events and identifying the brand trending popularity before it peaks. As the objective of this research is to find intelligent ways to assist small and medium sized retailers grow with MI strategy, we demonstrate the effects of AI, with algorithms in data preprocessing, market segmentation, and finding market trends. We show with a sales database of a small, local retailer how our Åbo algorithm increases mining performance and intelligence, as well as how it helps to extract valuable marketing insights to assess demand dynamics and product popularity trends. We also show how this results in commercial advantage and tangible return on investment. Additionally, an enhanced normal distribution method assists data pre-processing and helps to explore different types of potential anomalies.Små och medelstora detaljhandlare är centrala aktörer i den privata sektorn och bidrar starkt till den ekonomiska tillväxten, men de möter ofta enorma utmaningar i att uppnå sin fulla potential. Finansiella svårigheter, brist på marknadstillträde och svårigheter att utnyttja teknologi har ofta hindrat dem från att nå optimal produktivitet. Marknadsintelligens (MI) består av kunskap som samlats in från olika interna externa källor av data och som syftar till att erbjuda en helhetssyn av marknadsläget samt möjliggöra beslutsfattande i realtid. Ett relaterat och växande fenomen, samt ett viktigt tema inom marknadsföring är artificiell intelligens (AI) som ställer nya krav på marknadsförarnas färdigheter. Enorma mängder kunskap finns sparade i databaser av transaktioner samlade från detaljhandlarnas försäljningsplatser. Ändå är formatet på dessa data ofta sådant att det inte är lätt att tillgå och utnyttja kunskapen. Som AI-verktyg erbjuder affinitetsanalys en effektiv teknik för att identifiera upprepade mönster som statistiska associationer i data lagrade i stora försäljningsdatabaser. De hittade mönstren kan sedan utnyttjas som regler som förutser kundernas köpbeteende. I detaljhandel har affinitetsanalys blivit en nyckelfaktor bakom kors- och uppförsäljning. Som den centrala metoden i denna process fungerar marknadskorgsanalys som fångar upp kunskap från de heterogena köpbeteendena i data och hjälper till att utreda hur effektiva marknadsföringsplaner är. Apriori, som räknar upp de vanligt förekommande produktkombinationerna som köps tillsammans (marknadskorgen), är den centrala algoritmen i analysprocessen. Trots detta har Apriori brister som algoritm gällande låg beräkningshastighet och svag intelligens. När antalet parallella databassökningar stiger, ökar också beräkningskostnaden, vilket har negativa effekter på prestanda. Dessutom finns det brister i beslutstödet, speciellt gällande metoder att hitta sällan förekommande produktkombinationer, och i att identifiera ökande popularitet av varumärken från trenddata och utnyttja det innan det når sin höjdpunkt. Eftersom målet för denna forskning är att hjälpa små och medelstora detaljhandlare att växa med hjälp av MI-strategier, demonstreras effekter av AI med hjälp av algoritmer i förberedelsen av data, marknadssegmentering och trendanalys. Med hjälp av försäljningsdata från en liten, lokal detaljhandlare visar vi hur Åbo-algoritmen ökar prestanda och intelligens i datautvinningsprocessen och hjälper till att avslöja värdefulla insikter för marknadsföring, framför allt gällande dynamiken i efterfrågan och trender i populariteten av produkterna. Ytterligare visas hur detta resulterar i kommersiella fördelar och konkret avkastning på investering. Dessutom hjälper den utvidgade normalfördelningsmetoden i förberedelsen av data och med att hitta olika slags anomalier

    A framework for trend mining with application to medical data

    Get PDF
    This thesis presents research work conducted in the field of knowledge discovery. It presents an integrated trend-mining framework and SOMA, which is the application of the trend-mining framework in diabetic retinopathy data. Trend mining is the process of identifying and analysing trends in the context of the variation of support of the association/classification rules that have been extracted from longitudinal datasets. The integrated framework concerns all major processes from data preparation to the extraction of knowledge. At the pre-process stage, data are cleaned, transformed if necessary, and sorted into time-stamped datasets using logic rules. At the next stage, time-stamp datasets are passed through the main processing, in which the ARM technique of matrix algorithm is applied to identify frequent rules with acceptable confidence. Mathematical conditions are applied to classify the sequences of support values into trends. Afterwards, interestingness criteria are applied to obtain interesting knowledge, and a visualization technique is proposed that maps how objects are moving from the previous to the next time stamp. A validation and verification (external and internal validation) framework is described that aims to ensure that the results at the intermediate stages of the framework are correct and that the framework as a whole can yield results that demonstrate causality. To evaluate the thesis, SOMA was developed. The dataset is, in itself, also of interest, as it is very noisy (in common with other similar medical datasets) and does not feature a clear association between specific time stamps and subsets of the data. The Royal Liverpool University Hospital has been a major centre for retinopathy research since 1991. Retinopathy is a generic term used to describe damage to the retina of the eye, which can, in the long term, lead to visual loss. Diabetic retinopathy is used to evaluate the framework, to determine whether SOMA can extract knowledge that is already known to the medics. The results show that those datasets can be used to extract knowledge that can show causality between patients’ characteristics such as the age of patient at diagnosis, type of diabetes, duration of diabetes, and diabetic retinopathy
    • …
    corecore