247 research outputs found

    Digital forensic analysis of the private mode of browsers on Android

    Get PDF
    The smartphone has become an essential electronic device in our daily lives. We carry our most precious and important data on it, from family videos of the last few years to credit card information so that we can pay with our phones. In addition, in recent years, mobile devices have become the preferred device for surfing the web, already representing more than 50% of Internet traffic. As one of the devices we spend the most time with throughout the day, it is not surprising that we are increasingly demanding a higher level of privacy. One of the measures introduced to help us protect our data by isolating certain activities on the Internet is the private mode integrated in most modern browsers. Of course, this feature is not new, and has been available on desktop platforms for more than a decade. Reviewing the literature, one can find several studies that test the correct functioning of the private mode on the desktop. However, the number of studies conducted on mobile devices is incredibly small. And not only is it small, but also most of them perform the tests using various emulators or virtual machines running obsolete versions of Android. Therefore, in this paper we apply the methodology we presented in a previous work to Google Chrome, Brave, Mozilla Firefox, and Tor Browser running on a tablet with Android 13 and on two virtual devices created with Android Emulator. The results confirm that these browsers do not store information about the browsing performed in private mode in the file system. However, the analysis of the volatile memory made it possible to recover the username and password used to log in to a website or the keywords typed in a search engine, even after the devices had been rebootedThis work has received financial support from the Consellería de Cultura, Educación e Ordenación Universitaria of the Xunta de Galicia (accreditation 2019- 2022 ED431G-2019/04, reference competitive group 2022-2024, ED431C 2022/16) and the European Regional Development Fund (ERDF), which acknowledges the CiTIUS-Research Center in Intelligent Technologies of the University of Santiago de Compostela as a Research Center of the Galician University System. This work was also supported by the Ministry of Economy and Competitiveness, Government of Spain (Grant No. PID2019-104834 GB-I00). X. Fernández-Fuentes is supported by the Ministerio de Universidades, Spain under the FPU national plan (FPU18/04605)S

    Comparative Evaluation of Mobile Forensic Tools

    Get PDF
    The rapid rise in the technology today has brought to limelight mobile devices which are now being used as a tool to commit crime. Therefore, proper steps need to be ensured for Confidentiality, Integrity, Authenticity and legal acquisition of any form of digital evidence from the mobile devices. This study evaluates some mobile forensic tools that were developed mainly for mobile devices memory and SIM cards. An experiment was designed with five android phones with different Operating System. Four tools were used to find out the capability and efficiency of the tools when used on the sampled phones. This would help the forensic investigator to know the type of tools that will be suitable for each phone to be investigated for acquiring digital evidence. The evaluation result showed that AccessData FTK imager and Paraben device seizure performs better than Encase and Mobiledit. The experimental result shows that, Encase could detect the unallocated space on the mobile deice but could retrieve an deleted data

    Identifying and combating cyber-threats in the field of online banking

    Get PDF
    This thesis has been carried out in the industrial environment external to the University, as an industrial PhD. The results of this PhD have been tested, validated, and implemented in the production environment of Caixabank and have been used as models for others who have followed the same ideas. The most burning threats against banks throughout the Internet environment are based on software tools developed by criminal groups, applications running on web environment either on the computer of the victim (Malware) or on their mobile device itself through downloading rogue applications (fake app's with Malware APP). Method of the thesis has been used is an approximation of qualitative exploratory research on the problem, the answer to this problem and the use of preventive methods to this problem like used authentication systems. This method is based on samples, events, surveys, laboratory tests, experiments, proof of concept; ultimately actual data that has been able to deduce the thesis proposal, using both laboratory research and grounded theory methods of data pilot experiments conducted in real environments. I've been researching the various aspects related to e-crime following a line of research focusing on intrinsically related topics: - The methods, means and systems of attack: Malware, Malware families of banker Trojans, Malware cases of use, Zeus as case of use. - The fixed platforms, mobile applications and as a means for malware attacks. - forensic methods to analyze the malware and infrastructure attacks. - Continuous improvement of methods of authentication of customers and users as a first line of defense anti- malware. - Using biometrics as innovative factor authentication.The line investigating Malware and attack systems intrinsically is closed related to authentication methods and systems to infect customer (executables, APP's, etc.), because the main purpose of malware is precisely steal data entered in the "logon "authentication system, to operate and thus, fraudulently, steal money from online banking customers. Experiments in the Malware allowed establishing a new method of decryption establishing guidelines to combat its effects describing his fraudulent scheme and operation infection. I propose a general methodology to break the encryption communications malware (keystream), extracting the system used to encrypt such communications and a general approach of the Keystream technique. We show that this methodology can be used to respond to the threat of Zeus and finally provide lessons learned highlighting some general principles of Malware (in general) and in particular proposing Zeus Cronus, an IDS that specifically seeks the Zeus malware, testing it experimentally in a network production and providing an effective skills to combat the Malware are discussed. The thesis is a research interrelated progressive evolution between malware infection systems and authentication methods, reflected in the research work cumulatively, showing an evolution of research output and looking for a progressive improvement of methods authentication and recommendations for prevention and preventing infections, a review of the main app stores for mobile financial services and a proposal to these stores. The most common methods eIDAMS (authentication methods and electronic identification) implemented in Europe and its robustness are analyzed. An analysis of adequacy is presented in terms of efficiency, usability, costs, types of operations and segments including possibilities of use as authentication method with biometrics as innovation.Este trabajo de tesis se ha realizado en el entorno industrial externo a la Universidad como un PhD industrial Los resultados de este PhD han sido testeados, validados, e implementados en el entorno de producción de Caixabank y han sido utilizados como modelos por otras que han seguido las mismas ideas. Las amenazas más candentes contra los bancos en todo el entorno Internet, se basan en herramientas software desarrolladas por los grupos delincuentes, aplicaciones que se ejecutan tanto en entornos web ya sea en el propio ordenador de la víctima (Malware) o en sus dispositivos móviles mediante la descarga de falsas aplicaciones (APP falsa con Malware). Como método se ha utilizado una aproximación de investigación exploratoria cualitativa sobre el problema, la respuesta a este problema y el uso de métodos preventivos a este problema a través de la autenticación. Este método se ha basado en muestras, hechos, encuestas, pruebas de laboratorio, experimentos, pruebas de concepto; en definitiva datos reales de los que se ha podido deducir la tesis propuesta, utilizando tanto investigación de laboratorio como métodos de teoría fundamentada en datos de experimentos pilotos realizados en entornos reales. He estado investigando los diversos aspectos relacionados con e-crime siguiendo una línea de investigación focalizada en temas intrínsecamente relacionadas: - Los métodos, medios y sistemas de ataque: Malware, familias de Malware de troyanos bancarios, casos de usos de Malware, Zeus como caso de uso. - Las plataformas fijas, los móviles y sus aplicaciones como medio para realizar los ataques de Malware. - Métodos forenses para analizar el Malware y su infraestructura de ataque. - Mejora continuada de los métodos de autenticación de los clientes y usuarios como primera barrera de defensa anti- malware. - Uso de la biometría como factor de autenticación innovador. La línea investiga el Malware y sus sistemas de ataque intrínsecamente relacionada con los métodos de autenticación y los sistemas para infectar al cliente (ejecutables, APP's, etc.) porque el objetivo principal del malware es robar precisamente los datos que se introducen en el "logon" del sistema de autenticación para operar de forma fraudulenta y sustraer así el dinero de los clientes de banca electrónica. Los experimentos realizados en el Malware permitieron establecer un método novedoso de descifrado que estableció pautas para combatir sus efectos fraudulentos describiendo su esquema de infección y funcionamiento Propongo una metodología general para romper el cifrado de comunicaciones del malware (keystream) extrayendo el sistema utilizado para cifrar dichas comunicaciones y una generalización de la técnica de Keystream. Se demuestra que esta metodología puede usarse para responder a la amenaza de Zeus y finalmente proveemos lecciones aprendidas resaltando algunos principios generales del Malware (en general) y Zeus en particular proponiendo Cronus, un IDS que persigue específicamente el Malware Zeus, probándolo experimentalmente en una red de producción y se discuten sus habilidades y efectividad. En la tesis hay una evolución investigativa progresiva interrelacionada entre el Malware, sistemas de infección y los métodos de autenticación, que se refleja en los trabajos de investigación de manera acumulativa, mostrando una evolución del output de investigación y buscando una mejora progresiva de los métodos de autenticación y de la prevención y recomendaciones para evitar las infecciones, una revisión de las principales tiendas de Apps para servicios financieros para móviles y una propuesta para estas tiendas. Se analizan los métodos más comunes eIDAMS (Métodos de Autenticación e Identificación electrónica) implementados en Europa y su robustez y presentamos un análisis de adecuación en función de eficiencia, usabilidad, costes, tipos de operación y segmentos incluyendo un análisis de posibilidades con métodos biométricos como innovación.Postprint (published version

    Comprehensive forensic examination with Belkasoft evidence center

    Get PDF
    The enhancement and proliferation of information and communication technology (ICT) has tackled every aspect of human activity: work, leisure, sport, communication, medicine, etc. All around us we can see mobile phones and other connected devices that are now ubiquitous, changing trends in consumer behaviour. Therefore, there is no surprise in fact that such technologies can play a significant role in committing or assisting a crime, since data held on digital devices can give a detailed insight into people’s lives, communications, contacts, friends, family and acquaintances. In order to help law enforcement investigation of such crimes, digital forensic is performed with the aim of collecting crime-related evidence from various digital media and analyse it. Investigators use various forensic techniques to search hidden folders, retrieve deleted data, decrypt the data or restore damaged files, etc. Obtaining evidence such as location data, photos, messages or internet searches can be beneficial, if not crucial, in assisting the police with criminal investigations. Since advances in technologies have led to an increase in the volume, variety, velocity, and veracity of data available for digital forensic analysis, without efficient techniques and tools such investigation would require a tremendous amount of effort and time. That is the reason for expansion in the market of digital forensic tools, both proprietary and free for use, that are available today. In this paper an insight of digital forensic process is given, emphasizing the role of digital forensic tools in providing digital evidence. The possibility of one particular tool, Belkasoft Evidence Center – BEC, in acquisition and analysis of digital evidence was briefly described

    Forensic Methods and Tools for Web Environments

    Get PDF
    abstract: The Web is one of the most exciting and dynamic areas of development in today’s technology. However, with such activity, innovation, and ubiquity have come a set of new challenges for digital forensic examiners, making their jobs even more difficult. For examiners to become as effective with evidence from the Web as they currently are with more traditional evidence, they need (1) methods that guide them to know how to approach this new type of evidence and (2) tools that accommodate web environments’ unique characteristics. In this dissertation, I present my research to alleviate the difficulties forensic examiners currently face with respect to evidence originating from web environments. First, I introduce a framework for web environment forensics, which elaborates on and addresses the key challenges examiners face and outlines a method for how to approach web-based evidence. Next, I describe my work to identify extensions installed on encrypted web thin clients using only a sound understanding of these systems’ inner workings and the metadata of the encrypted files. Finally, I discuss my approach to reconstructing the timeline of events on encrypted web thin clients by using service provider APIs as a proxy for directly analyzing the device. In each of these research areas, I also introduce structured formats that I customized to accommodate the unique features of the evidence sources while also facilitating tool interoperability and information sharing.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Bootbandit: A macOS Bootloader Attack

    Get PDF
    Full disk encryption (FDE) is used to protect a computer system against data theft by physical access. If a laptop or hard disk drive protected with FDE is stolen or lost, the data remains unreadable without the encryption key. To foil this defense, an intruder can gain physical access to a computer system in a so-called “evil maid” attack, install malware in the boot (pre-operating system) environment, and use the malware to intercept the victim’s password. Such an attack relies on the fact that the system is in a vulnerable state before booting into the operating system. In this paper, we discuss an evil maid type of attack, in which the victim’s password is stolen in the boot environment, passed to the macOS user environment, and then exfiltrated from the system to the attacker’s remote command and control server. On a macOS system, this attack has additional implications due to “password forwarding” technology, in which users’ account passwords also serve as FDE passwords
    corecore