3,588 research outputs found

    The influence of user mobility in mobile virus propagation: An enterprise mobile security perspective

    Get PDF
    In this paper, the authors review the usage of mobile devices in the enterprise and also the major impact from the infected mobile devices.Then the authors highlight the virus threat to enterprise mobile security and how critical the problems are.The authors then discuss the mobile virus infection dynamics which are the Bluetooth infections, mobile emails infections and mobile internet infections which are the threats to the enterprise mobile security. Then the authors discuss on the influences of user mobility issue in spreading mobile viruses before concluded this article

    Explainable and Interpretable Face Presentation Attack Detection Methods

    Get PDF
    Decision support systems based on machine learning (ML) techniques are excelling in most artificial intelligence (AI) fields, over-performing other AI methods, as well as humans. However, challenges still exist that do not favour the dominance of AI in some applications. This proposal focuses on a critical one: lack of transparency and explainability, reducing trust and accountability of an AI system. The fact that most AI methods still operate as complex black boxes, makes the inner processes which sustain their predictions still unattainable. The awareness around these observations foster the need to regulate many sensitive domains where AI has been applied in order to interpret, explain and audit the reliability of the ML based systems. Although modern-day biometric recognition (BR) systems are already benefiting from the performance gains achieved with AI (which can account for and learn subtle changes in the person to be authenticated or statistical mismatches between samples), it is still in the dark ages of black box models, without reaping the benefits of the mismatches between samples), it is still in the dark ages of black box models, without reaping the benefits of the XAI field. This work will focus on studying AI explainability in the field of biometrics focusing in particular use cases in BR, such as verification/ identification of individuals and liveness detection (LD) (aka, antispoofing). The main goals of this work are: i) to become acquainted with the state-of-the-art in explainability and biometric recognition and PAD methods; ii) to develop an experimental work xxxxx Tasks 1st semester (1) Study of the state of the art- bibliography review on state of the art for presentation attack detection (2) Get acquainted with the previous work of the group in the topic (3) Data preparation and data pre-processing (3) Define the experimental protocol, including performance metrics (4) Perform baseline experiments (5) Write monography Tasks 2nd semester (1) Update on the state of the art (2) Data preparation and data pre-processing (3) Propose and implement a methodology for interpretability in biometrics (4) Evaluation of the performance and comparison with baseline and state of the art approaches (5) Dissertation writing Referências bibliográficas principais: (*) [Doshi17] B. Kim and F. Doshi-Velez, "Interpretable machine learning: The fuss, the concrete and the questions," 2017 [Mol19] Christoph Molnar. Interpretable Machine Learning. 2019 [Sei18] C. Seibold, W. Samek, A. Hilsmann, and P. Eisert, "Accurate and robust neural networks for security related applications exampled by face morphing attacks," arXiv preprint arXiv:1806.04265, 2018 [Seq20] Sequeira, Ana F., João T. Pinto, Wilson Silva, Tiago Gonçalves and Cardoso, Jaime S., "Interpretable Biometrics: Should We Rethink How Presentation Attack Detection is Evaluated?", 8th IWBF2020 [Wilson18] W. Silva, K. Fernandes, M. J. Cardoso, and J. S. Cardoso, "Towards complementary explanations using deep neural networks," in Understanding and Interpreting Machine Learning in MICA. Springer, 2018 [Wilson19] W. Silva, K. Fernandes, and J. S. Cardoso, "How to produce complementary explanations using an Ensemble Model," in IJCNN. 2019 [Wilson19A] W. Silva, M. J. Cardoso, and J. S. Cardoso, "Image captioning as a proxy for Explainable Decisions" in Understanding and Interpreting Machine Learning in MICA, 2019 (Submitted

    Early Warning Analysis for Social Diffusion Events

    Get PDF
    There is considerable interest in developing predictive capabilities for social diffusion processes, for instance to permit early identification of emerging contentious situations, rapid detection of disease outbreaks, or accurate forecasting of the ultimate reach of potentially viral ideas or behaviors. This paper proposes a new approach to this predictive analytics problem, in which analysis of meso-scale network dynamics is leveraged to generate useful predictions for complex social phenomena. We begin by deriving a stochastic hybrid dynamical systems (S-HDS) model for diffusion processes taking place over social networks with realistic topologies; this modeling approach is inspired by recent work in biology demonstrating that S-HDS offer a useful mathematical formalism with which to represent complex, multi-scale biological network dynamics. We then perform formal stochastic reachability analysis with this S-HDS model and conclude that the outcomes of social diffusion processes may depend crucially upon the way the early dynamics of the process interacts with the underlying network's community structure and core-periphery structure. This theoretical finding provides the foundations for developing a machine learning algorithm that enables accurate early warning analysis for social diffusion events. The utility of the warning algorithm, and the power of network-based predictive metrics, are demonstrated through an empirical investigation of the propagation of political memes over social media networks. Additionally, we illustrate the potential of the approach for security informatics applications through case studies involving early warning analysis of large-scale protests events and politically-motivated cyber attacks

    Development of a multi-layered botmaster based analysis framework

    Get PDF
    Botnets are networks of compromised machines called bots that come together to form the tool of choice for hackers in the exploitation and destruction of computer networks. Most malicious botnets have the ability to be rented out to a broad range of potential customers, with each customer having an attack agenda different from the other. The result is a botnet that is under the control of multiple botmasters, each of which implement their own attacks and transactions at different times in the botnet. In order to fight botnets, details about their structure, users, and their users motives need to be discovered. Since current botnets require the information about the initial bootstrapping of a bot to a botnet, the monitoring of botnets are possible. Botnet monitoring is used to discover the details of a botnet, but current botnet monitoring projects mainly identify the magnitude of the botnet problem and tend to overt some fundamental problems, such as the diversified sources of the attacks. To understand the use of botnets in more detail, the botmasters that command the botnets need to be studied. In this thesis we focus on identifying the threat of botnets based on each individual botmaster. We present a multi-layered analysis framework which identifies the transactions of each botmaster and then we correlate the transactions with the physical evolution of the botnet. With these characteristics we discover what role each botmaster plays in the overall botnet operation. We demonstrate our results in our system: MasterBlaster, which discovers the level of interaction between each botmaster and the botnet. Our system has been evaluated in real network traces. Our results show that investigating the roles of each botmaster in a botnet should be essential and demonstrates its potential benefit for identifying and conducting additional research on analyzing botmaster interactions. We believe our work will pave the way for more fine-grained analysis of botnets which will lead to better protection capabilities and more rapid attribution of cyber crimes committed using botnets

    Availability by Design:A Complementary Approach to Denial-of-Service

    Get PDF
    • …
    corecore