8,757 research outputs found

    Fit for planning? An evaluation of the application of development viability appraisal models in the UK planning system

    Get PDF
    The aim of this paper is to critically examine the application of development appraisal to viability assessment in the planning system. This evaluation is of development appraisal models in general and also their use in particular applications associated with estimating planning obligation capacity. The paper is organised into four themes: · The context and conceptual basis for development viability appraisal · A review of development viability appraisal methods · A discussion of selected key inputs into a development viability appraisal · A discussion of the applications of development viability appraisals in the planning system It is assumed that readers are familiar with the basic models and information needs of development viability appraisal rather than at the cutting edge of practice and/or academ

    Fit for Planning? An Evaluation of the Application of Development Viability Appraisal Models in the UK Planning System

    Get PDF
    The aim of this paper is to critically examine the application of development appraisal to viability assessment in the planning system. This evaluation is of development appraisal models in general and also their use in particular applications associated with estimating planning obligation capacity. The paper is organised into four themes: · The context and conceptual basis for development viability appraisal · A review of development viability appraisal methods · A discussion of selected key inputs into a development viability appraisal · A discussion of the applications of development viability appraisals in the planning system. It is assumed that readers are familiar with the basic models and information needs of development viability appraisal rather than at the cutting edge of practice and/or academe.

    Quantifying leakage in the presence of unreliable sources of information

    Get PDF
    Belief and min-entropy leakage are two well-known approaches to quantify information flow in security systems. Both concepts stand as alternatives to the traditional approaches founded on Shannon entropy and mutual information, which were shown to provide inadequate security guarantees. In this paper we unify the two concepts in one model so as to cope with the frequent (potentially inaccurate, misleading or outdated) attackers’ side information about individuals on social networks, online forums, blogs and other forms of online communication and information sharing. To this end we propose a new metric based on min-entropy that takes into account the adversary’s beliefs

    Generalized Evidence Theory

    Full text link
    Conflict management is still an open issue in the application of Dempster Shafer evidence theory. A lot of works have been presented to address this issue. In this paper, a new theory, called as generalized evidence theory (GET), is proposed. Compared with existing methods, GET assumes that the general situation is in open world due to the uncertainty and incomplete knowledge. The conflicting evidence is handled under the framework of GET. It is shown that the new theory can explain and deal with the conflicting evidence in a more reasonable way.Comment: 39 pages, 5 figure

    Context-dependent combination of sensor information in Dempster–Shafer theory for BDI

    Get PDF
    © 2016, The Author(s). There has been much interest in the belief–desire–intention (BDI) agent-based model for developing scalable intelligent systems, e.g. using the AgentSpeak framework. However, reasoning from sensor information in these large-scale systems remains a significant challenge. For example, agents may be faced with information from heterogeneous sources which is uncertain and incomplete, while the sources themselves may be unreliable or conflicting. In order to derive meaningful conclusions, it is important that such information be correctly modelled and combined. In this paper, we choose to model uncertain sensor information in Dempster–Shafer (DS) theory. Unfortunately, as in other uncertainty theories, simple combination strategies in DS theory are often too restrictive (losing valuable information) or too permissive (resulting in ignorance). For this reason, we investigate how a context-dependent strategy originally defined for possibility theory can be adapted to DS theory. In particular, we use the notion of largely partially maximal consistent subsets (LPMCSes) to characterise the context for when to use Dempster’s original rule of combination and for when to resort to an alternative. To guide this process, we identify existing measures of similarity and conflict for finding LPMCSes along with quality of information heuristics to ensure that LPMCSes are formed around high-quality information. We then propose an intelligent sensor model for integrating this information into the AgentSpeak framework which is responsible for applying evidence propagation to construct compatible information, for performing context-dependent combination and for deriving beliefs for revising an agent’s belief base. Finally, we present a power grid scenario inspired by a real-world case study to demonstrate our work

    Tracking Uncertainty Propagation from Model to Formalization: Illustration on Trust Assessment

    Get PDF
    International audienceThis paper investigates the use of the URREF ontology to characterize and track uncertainties arising within the modeling and formalization phases. Estimation of trust in reported information, a real-world problem of interest to practitioners in the field of security, was adopted for illustration purposes. A functional model of trust was developed to describe the analysis of reported information, and it was implemented with belief functions. When assessing trust in reported information, the uncertainty arises not only from the quality of sources or information content, but also due to the inability of models to capture the complex chain of interactions leading to the final outcome and to constraints imposed by the representation formalism. A primary goal of this work is to separate known approximations, imperfections and inaccuracies from potential errors, while explicitly tracking the uncertainty from the modeling to the formalization phases. A secondary goal is to illustrate how criteria of the URREF ontology can offer a basis for analyzing performances of fusion systems at early stages, ahead of implementation. Ideally, since uncertainty analysis runs dynamically, it can use the existence or absence of observed states and processes inducing uncertainty to adjust the tradeoff between precision and performance of systems on-the-fly

    A novel multi-classifier information fusion based on Dempster-Shafer theory: application to vibration-based fault detection

    Full text link
    Achieving a high prediction rate is a crucial task in fault detection. Although various classification procedures are available, none of them can give high accuracy in all applications. Therefore, in this paper, a novel multi-classifier fusion approach is developed to boost the performance of the individual classifiers. This is acquired by using Dempster-Shafer theory (DST). However, in cases with conflicting evidences, the DST may give counter-intuitive results. In this regard, a preprocessing technique based on a new metric is devised in order to measure and mitigate the conflict between the evidences. To evaluate and validate the effectiveness of the proposed approach, the method is applied to 15 benchmarks datasets from UCI and KEEL. Further, it is applied for classifying polycrystalline Nickel alloy first-stage turbine blades based on their broadband vibrational response. Through statistical analysis with different noise levels, and by comparing with four state-of-the-art fusion techniques, it is shown that that the proposed method improves the classification accuracy and outperforms the individual classifiers.Comment: arXiv admin note: text overlap with arXiv:2007.0878
    corecore