643 research outputs found

    A Survey on Anonymous On-Demand Routing Protocols for MANETs

    Get PDF
    At present Mobile ad hoc networks (MANET) is used in many real time applications and hence such networks are vulnerable to different kinds of security threats. MANET networks suffered more from security attacks due to use of free wireless communication frequency spectrum and dynamic topology. Therefore it becomes very tough to provide security to MANET under different adversarial environments like battlefields. For MANET, anonymous communications are vital under the adversarial environments, in which the identification of nodes as well as routes is replaced by pseudonyms or random numbers for the purpose of protection. There are many protocols presented for anonymous communication security for MANET, which hide node identities and routes from exterior observers in order to provide anonymity protection. This paper presents review of various anonymous on demand routing protocols

    Private and censorship-resistant communication over public networks

    Get PDF
    Society’s increasing reliance on digital communication networks is creating unprecedented opportunities for wholesale surveillance and censorship. This thesis investigates the use of public networks such as the Internet to build robust, private communication systems that can resist monitoring and attacks by powerful adversaries such as national governments. We sketch the design of a censorship-resistant communication system based on peer-to-peer Internet overlays in which the participants only communicate directly with people they know and trust. This ‘friend-to-friend’ approach protects the participants’ privacy, but it also presents two significant challenges. The first is that, as with any peer-to-peer overlay, the users of the system must collectively provide the resources necessary for its operation; some users might prefer to use the system without contributing resources equal to those they consume, and if many users do so, the system may not be able to survive. To address this challenge we present a new game theoretic model of the problem of encouraging cooperation between selfish actors under conditions of scarcity, and develop a strategy for the game that provides rational incentives for cooperation under a wide range of conditions. The second challenge is that the structure of a friend-to-friend overlay may reveal the users’ social relationships to an adversary monitoring the underlying network. To conceal their sensitive relationships from the adversary, the users must be able to communicate indirectly across the overlay in a way that resists monitoring and attacks by other participants. We address this second challenge by developing two new routing protocols that robustly deliver messages across networks with unknown topologies, without revealing the identities of the communication endpoints to intermediate nodes or vice versa. The protocols make use of a novel unforgeable acknowledgement mechanism that proves that a message has been delivered without identifying the source or destination of the message or the path by which it was delivered. One of the routing protocols is shown to be robust to attacks by malicious participants, while the other provides rational incentives for selfish participants to cooperate in forwarding messages

    Off-chain Transaction Routing in Payment Channel Networks: A Machine Learning Approach

    Get PDF
    Blockchain is a foundational technology that has the potential to create new prospects for our economic and social systems. However, the scalability problem limits the capability to deliver a target throughput and latency, compared to the traditional financial systems, with increasing workload. Layer-two is a collective term for solutions designed to help solve the scalability by handling transactions off the main chain, also known as layer one. These solutions have the capability to achieve high throughput, fast settlement, and cost efficiency without sacrificing network security. For example, bidirectional payment channels are utilized to allow the execution of fast transactions between two parties, thus forming the so-called payment channel networks (PCNs). Consequently, an efficient routing protocol is needed to find the payment path from the sender to the receiver, with the lowest transaction fees. This routing protocol needs to consider, among other factors, the unexpected online/offline behavior of the constituent payment nodes as well as payment channel imbalance. This study proposes a novel machine learning-based routing technique for fully distributed and efficient off-chain transactions to be used within the PCNs. For this purpose, the effect of the offline nodes and channel imbalance on the payment channels network are modeled. The simulation results demonstrate a good tradeoff among success ratio, transaction fees, routing efficiency, transaction overhead, and transaction maintenance overhead as compared to other techniques that have been previously proposed for the same purpose

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    When energy trading meets blockchain in electrical power system: The state of the art

    Get PDF
    With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.This research was funded by Beijing Natural Science Foundation (grant number 4182060).Scopu
    • …
    corecore