164 research outputs found

    Krylov implicit integration factor discontinuous Galerkin methods on sparse grids for high dimensional reaction-diffusion equations

    Full text link
    Computational costs of numerically solving multidimensional partial differential equations (PDEs) increase significantly when the spatial dimensions of the PDEs are high, due to large number of spatial grid points. For multidimensional reaction-diffusion equations, stiffness of the system provides additional challenges for achieving efficient numerical simulations. In this paper, we propose a class of Krylov implicit integration factor (IIF) discontinuous Galerkin (DG) methods on sparse grids to solve reaction-diffusion equations on high spatial dimensions. The key ingredient of spatial DG discretization is the multiwavelet bases on nested sparse grids, which can significantly reduce the numbers of degrees of freedom. To deal with the stiffness of the DG spatial operator in discretizing reaction-diffusion equations, we apply the efficient IIF time discretization methods, which are a class of exponential integrators. Krylov subspace approximations are used to evaluate the large size matrix exponentials resulting from IIF schemes for solving PDEs on high spatial dimensions. Stability and error analysis for the semi-discrete scheme are performed. Numerical examples of both scalar equations and systems in two and three spatial dimensions are provided to demonstrate the accuracy and efficiency of the methods. The stiffness of the reaction-diffusion equations is resolved well and large time step size computations are obtained

    Computation and Learning in High Dimensions (hybrid meeting)

    Get PDF
    The most challenging problems in science often involve the learning and accurate computation of high dimensional functions. High-dimensionality is a typical feature for a multitude of problems in various areas of science. The so-called curse of dimensionality typically negates the use of traditional numerical techniques for the solution of high-dimensional problems. Instead, novel theoretical and computational approaches need to be developed to make them tractable and to capture fine resolutions and relevant features. Paradoxically, increasing computational power may even serve to heighten this demand, since the wealth of new computational data itself becomes a major obstruction. Extracting essential information from complex problem-inherent structures and developing rigorous models to quantify the quality of information in a high-dimensional setting pose challenging tasks from both theoretical and numerical perspective. This has led to the emergence of several new computational methodologies, accounting for the fact that by now well understood methods drawing on spatial localization and mesh-refinement are in their original form no longer viable. Common to these approaches is the nonlinearity of the solution method. For certain problem classes, these methods have drastically advanced the frontiers of computability. The most visible of these new methods is deep learning. Although the use of deep neural networks has been extremely successful in certain application areas, their mathematical understanding is far from complete. This workshop proposed to deepen the understanding of the underlying mathematical concepts that drive this new evolution of computational methods and to promote the exchange of ideas emerging in various disciplines about how to treat multiscale and high-dimensional problems

    Metric based up-scaling

    Get PDF
    We consider divergence form elliptic operators in dimension n≥2n\geq 2 with L∞L^\infty coefficients. Although solutions of these operators are only H\"{o}lder continuous, we show that they are differentiable (C1,αC^{1,\alpha}) with respect to harmonic coordinates. It follows that numerical homogenization can be extended to situations where the medium has no ergodicity at small scales and is characterized by a continuum of scales by transferring a new metric in addition to traditional averaged (homogenized) quantities from subgrid scales into computational scales and error bounds can be given. This numerical homogenization method can also be used as a compression tool for differential operators.Comment: Final version. Accepted for publication in Communications on Pure and Applied Mathematics. Presented at CIMMS (March 2005), Socams 2005 (April), Oberwolfach, MPI Leipzig (May 2005), CIRM (July 2005). Higher resolution figures are available at http://www.acm.caltech.edu/~owhadi

    Differential quadrature method for space-fractional diffusion equations on 2D irregular domains

    Full text link
    In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L\'{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the differential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.Comment: 25 pages, 25 figures, 7 table

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD

    Uncertainty quantification for problems in radionuclide transport

    No full text
    The field of radionuclide transport has long recognised the stochastic nature of the problems encountered. Many parameters that are used in computational models are very difficult, if not impossible, to measure with any great degree of confidence. For example, bedrock properties can only be measured at a few discrete points, the properties between these points may be inferred or estimated using experiments but it is difficult to achieve any high levels of confidence. This is a major problem when many countries around the world are considering deep geologic repositories as a disposal option for long-lived nuclear waste but require a high degree of confidence that any release of radioactive material will not pose a risk to future populations. In this thesis we apply Polynomial Chaos methods to a model of the biosphere that is similar to those used to assess exposure pathways for humans and associated dose rates by many countries worldwide. We also apply the Spectral-Stochastic Finite Element Method to the problem of contaminated fluid flow in a porous medium. For this problem we use the Multi-Element generalized Polynomial Chaos method to discretise the random dimensions in a manner similar to the well known Finite Element Method. The stochastic discretisation is then refined adaptively to mitigate the build up errors over the solution times. It was found that these methods have the potential to provide much improved estimates for radionuclide transport problems. However, further development is needed in order to obtain the necessary efficiency that would be required to solve industrial problems

    Stability analysis of a hyperbolic stochastic Galerkin formulation for the Aw-Rascle-Zhang model with relaxation

    Get PDF
    We investigate the propagation of uncertainties in the Aw-Rascle-Zhang model, which belongs to a class of second order traffic flow models described by a system of nonlinear hyperbolic equations. The stochastic quantities are expanded in terms of wavelet-based series expansions. Then, they are projected to obtain a deterministic system for the coefficients in the truncated series. Stochastic Galerkin formulations are presented in conservative form and for smooth solutions also in the corresponding non-conservative form. This allows to obtain stabilization results, when the system is relaxed to a first-order model. Computational tests illustrate the theoretical results

    Scalable angular adaptivity for Boltzmann transport

    Get PDF
    This paper describes an angular adaptivity algorithm for Boltzmann transport applications which for the first time shows evidence of O(n)\mathcal{O}(n) scaling in both runtime and memory usage, where nn is the number of adapted angles. This adaptivity uses Haar wavelets, which perform structured hh-adaptivity built on top of a hierarchical P0_0 FEM discretisation of a 2D angular domain, allowing different anisotropic angular resolution to be applied across space/energy. Fixed angular refinement, along with regular and goal-based error metrics are shown in three example problems taken from neutronics/radiative transfer applications. We use a spatial discretisation designed to use less memory than competing alternatives in general applications and gives us the flexibility to use a matrix-free multgrid method as our iterative method. This relies on scalable matrix-vector products using Fast Wavelet Transforms and allows the use of traditional sweep algorithms if desired

    Combined variational iteration method with chebyshev wavelet for the solution of convection-diffusion-reaction problem

    Get PDF
    The goal of the work is to solve the nonlinear convection-diffusion-reaction problem using the variational iteration method with the combination of the Chebyshev wavelet. This work developed a hybrid iterative technique named as Variational iteration method with the Chebyshev wavelet for the solutions of nonlinear convection-diffusion-reaction problems. The aim of applying the derived algorithm is to achieve fast convergence. During the solution of the given problem, the restricted variations will be mathematically justified. The effects of the scaling and other parameters like diffusion parameter, convection parameter, and reaction parameter on the solution are also focused on by their suitable selection. The approximate results include the error profiles and the simulations. The results of variational iteration with the Chebyshev wavelet are compared with variational iteration method, the Modified variational iteration method, and the Variational iteration method with Legendre wavelet. The error profiles allow us to compare the results with well-known existing schemes

    Anisotropic Adaptivity and Subgrid Scale Modelling for the Solution of the Neutron Transport Equation with an Emphasis on Shielding Applications

    No full text
    This thesis demonstrates advanced new discretisation and adaptive meshing technologies that improve the accuracy and stability of using finite element discretisations applied to the Boltzmann transport equation (BTE). This equation describes the advective transport of neutral particles such as neutrons and photons within a domain. The BTE is difficult to solve, due to its large phase space (three dimensions of space, two of angle and one each of energy and time) and the presence of non-physical oscillations in many situations. This work explores the use of a finite element method that combines the advantages of the two schemes: the discontinuous and continuous Galerkin methods. The new discretisation uses multiscale (subgrid) finite elements that work locally within each element in the finite element mesh in addition to a global, continuous, formulation. The use of higher order functions that describe the variation of the angular flux over each element is also explored using these subgrid finite element schemes. In addition to the spatial discretisation, methods have also been developed to optimise the finite element mesh in order to reduce resulting errors in the solution over the domain, or locally in situations where there is a goal of specific interest (such as a dose in a detector region). The chapters of this thesis have been structured to be submitted individually for journal publication, and are arranged as follows. Chapter 1 introduces the reader to motivation behind the research contained within this thesis. Chapter 2 introduces the forms of the BTE that are used within this thesis. Chapter 3 provides the methods that are used, together with examples, of the validation and verification of the software that was developed as a result of this work, the transport code RADIANT. Chapter 4 introduces the inner element subgrid scale finite element discretisation of the BTE that forms the basis of the discretisations within RADIANT and explores its convergence and computational times on a set of benchmark problems. Chapter 5 develops the error metrics that are used to optimise the mesh in order to reduce the discretisation error within a finite element mesh using anisotropic adaptivity that can use elongated elements that accurately resolves computational demanding regions, such as in the presence of shocks. The work of this chapter is then extended in Chapter 6 that forms error metrics for goal based adaptivity to minimise the error in a detector response. Finally, conclusions from this thesis and suggestions for future work that may be explored are discussed in Chapter 7.Open Acces
    • …
    corecore