810 research outputs found

    Adjoint-Based Error Estimation and Mesh Adaptation for Hybridized Discontinuous Galerkin Methods

    Full text link
    We present a robust and efficient target-based mesh adaptation methodology, building on hybridized discontinuous Galerkin schemes for (nonlinear) convection-diffusion problems, including the compressible Euler and Navier-Stokes equations. Hybridization of finite element discretizations has the main advantage, that the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much smaller system. This not only reduces storage requirements, but also allows for a faster solution with iterative solvers. The mesh adaptation is driven by an error estimate obtained via a discrete adjoint approach. Furthermore, the computed target functional can be corrected with this error estimate to obtain an even more accurate value. The aim of this paper is twofold: Firstly, to show the superiority of adjoint-based mesh adaptation over uniform and residual-based mesh refinement, and secondly to investigate the efficiency of the global error estimate

    One-dimensional shock-capturing for high-order discontinuous Galerkin methods

    Get PDF
    Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology

    A Comparison of Hybridized and Standard DG Methods for Target-Based hp-Adaptive Simulation of Compressible Flow

    Get PDF
    We present a comparison between hybridized and non-hybridized discontinuous Galerkin methods in the context of target-based hp-adaptation for compressible flow problems. The aim is to provide a critical assessment of the computational efficiency of hybridized DG methods. Hybridization of finite element discretizations has the main advantage, that the resulting set of algebraic equations has globally coupled degrees of freedom only on the skeleton of the computational mesh. Consequently, solving for these degrees of freedom involves the solution of a potentially much smaller system. This not only reduces storage requirements, but also allows for a faster solution with iterative solvers. Using a discrete-adjoint approach, sensitivities with respect to output functionals are computed to drive the adaptation. From the error distribution given by the adjoint-based error estimator, h- or p-refinement is chosen based on the smoothness of the solution which can be quantified by properly-chosen smoothness indicators. Numerical results are shown for subsonic, transonic, and supersonic flow around the NACA0012 airfoil. hp-adaptation proves to be superior to pure h-adaptation if discontinuous or singular flow features are involved. In all cases, a higher polynomial degree turns out to be beneficial. We show that for polynomial degree of approximation p=2 and higher, and for a broad range of test cases, HDG performs better than DG in terms of runtime and memory requirements

    A high-resolution Petrov-Galerkin method for the convection-diffusion-reaction problem. Part II-A multidimensional extension

    Get PDF
    A multidimensional extension of the HRPG method using the lowest order block finite elements is presented. First, we design a nondimensional element number that quantifies the characteristic layers which are found only in higher dimensions. This is done by matching the width of the characteristic layers to the width of the parabolic layers found for a fictitious 1D reaction–diffusion problem. The nondimensional element number is then defined using this fictitious reaction coefficient, the diffusion coefficient and an appropriate element size. Next, we introduce anisotropic element length vectors li and the stabilization parameters αi, βi are calculated along these li. Except for the modification to include the new dimensionless number that quantifies the characteristic layers, the definitions of αi, βi are a direct extension of their counterparts in 1D. Using αi, βiand li, objective characteristic tensors associated with the HRPG method are defined. The numerical artifacts across the characteristic layers are manifested as the Gibbs phenomenon. Hence, we treat them just like the artifacts formed across the parabolic layers in the reaction-dominant case. Several 2D examples are presented that support the design objective—stabilization with high-resolutio

    On discrete maximum principles for discontinuous Galerkin methods

    Get PDF
    The aim of this work is to propose a monotonicity-preserving method for discontinuous Galerkin (dG) approximations of convection–diffusion problems. To do so, a novel definition of discrete maximum principle (DMP) is proposed using the discrete variational setting of the problem, and we show that the fulfilment of this DMP implies that the minimum/maximum (depending on the sign of the forcing term) is on the boundary for multidimensional problems. Then, an artificial viscosity (AV) technique is designed for convection-dominant problems that satisfies the above mentioned DMP. The noncomplete stabilized interior penalty dG method is proved to fulfil the DMP property for the one-dimensional linear case when adding such AV with certain parameters. The benchmarks for the constant values to satisfy the DMP are calculated and tested in the numerical experiments section. Finally, the method is applied to different test problems in one and two dimensions to show its performance

    On the Convergence of Space-Time Discontinuous Galerkin Schemes for Scalar Conservation Laws

    Full text link
    We prove convergence of a class of space-time discontinuous Galerkin schemes for scalar hyperbolic conservation laws. Convergence to the unique entropy solution is shown for all orders of polynomial approximation, provided strictly monotone flux functions and a suitable shock-capturing operator are used. The main improvement, compared to previously published results of similar scope, is that no streamline-diffusion stabilization is used. This is the way discontinuous Galerkin schemes were originally proposed, and are most often used in practice

    Shock capturing techniques for hp-adaptive finite elements

    No full text
    The aim of this work is to propose an hp-adaptive algorithm for discontinuous Galerkin methods that is capable to detect the discontinuities and sharp layers and avoid the spurious oscillation of the solution around them. In order to control the spurious oscillations, artificial viscosity is used with the particularity that it is only applied around the layers where the solution changes abruptly. To do so, a novel troubled-cell detector has been developed in order to mark the elements around those layers and to impose linear order in them. The detector takes advantage of the evolution of the value of the gradient through the adaptive process.Peer ReviewedPostprint (published version
    • …
    corecore