2,406 research outputs found

    A first order system least squares method for the Helmholtz equation

    Full text link
    We present a first order system least squares (FOSLS) method for the Helmholtz equation at high wave number k, which always deduces Hermitian positive definite algebraic system. By utilizing a non-trivial solution decomposition to the dual FOSLS problem which is quite different from that of standard finite element method, we give error analysis to the hp-version of the FOSLS method where the dependence on the mesh size h, the approximation order p, and the wave number k is given explicitly. In particular, under some assumption of the boundary of the domain, the L2 norm error estimate of the scalar solution from the FOSLS method is shown to be quasi optimal under the condition that kh/p is sufficiently small and the polynomial degree p is at least O(\log k). Numerical experiments are given to verify the theoretical results

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Stable Multiscale Petrov-Galerkin Finite Element Method for High Frequency Acoustic Scattering

    Full text link
    We present and analyze a pollution-free Petrov-Galerkin multiscale finite element method for the Helmholtz problem with large wave number κ\kappa as a variant of [Peterseim, ArXiv:1411.1944, 2014]. We use standard continuous Q1Q_1 finite elements at a coarse discretization scale HH as trial functions, whereas the test functions are computed as the solutions of local problems at a finer scale hh. The diameter of the support of the test functions behaves like mHmH for some oversampling parameter mm. Provided mm is of the order of log(κ)\log(\kappa) and hh is sufficiently small, the resulting method is stable and quasi-optimal in the regime where HH is proportional to κ1\kappa^{-1}. In homogeneous (or more general periodic) media, the fine scale test functions depend only on local mesh-configurations. Therefore, the seemingly high cost for the computation of the test functions can be drastically reduced on structured meshes. We present numerical experiments in two and three space dimensions.Comment: The version coincides with v3. We only resized some figures which were difficult to process for certain printer

    On stability of discretizations of the Helmholtz equation (extended version)

    Full text link
    We review the stability properties of several discretizations of the Helmholtz equation at large wavenumbers. For a model problem in a polygon, a complete kk-explicit stability (including kk-explicit stability of the continuous problem) and convergence theory for high order finite element methods is developed. In particular, quasi-optimality is shown for a fixed number of degrees of freedom per wavelength if the mesh size hh and the approximation order pp are selected such that kh/pkh/p is sufficiently small and p=O(logk)p = O(\log k), and, additionally, appropriate mesh refinement is used near the vertices. We also review the stability properties of two classes of numerical schemes that use piecewise solutions of the homogeneous Helmholtz equation, namely, Least Squares methods and Discontinuous Galerkin (DG) methods. The latter includes the Ultra Weak Variational Formulation
    corecore