65 research outputs found

    Vibration Theory, Vol. 4:advanced methods in stochastic dynamics of non-linear systems

    Get PDF

    Response and Reliability Problems of Dynamic Systems

    Get PDF

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”

    Activities of the Institute for Computer Applications in Science and Engineering (ICASE)

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science during the period October 1, 1984 through March 31, 1985 is summarized

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Huygens' synchronization of dynamical systems : beyond pendulum clocks

    Get PDF
    Synchronization is one of the most deeply rooted and pervasive behaviours in nature. It extends from human beings to unconscious entities. Some familiar examples include the fascinating motion of schools of fish, the simultaneous flashing of fireflies, a couple dancing in synchrony with the rhythm of the music, the synchronous firing of neurons and pacemaker cells, and the synchronized motion of pendulum clocks. In a first glimpse to these examples, the existence of selfsynchronization in nature may seem almost miraculous. However, the main "secret" behind this phenomenon is that there exists a communication channel, called coupling, such that the entities/systems can influence each other. This coupling can be, for instance, in the form of a physical interconnection or a certain chemical process. Although synchronization is a ubiquitous phenomenon among coupled oscillatory systems, its onset is not always obvious. Consequently, the following questions arise: How exactly do coupled oscillators synchronize themselves, and under what conditions? In some cases, obtaining answers for these questions is extremely challenging. Consider for instance, the famous example of Christiaan Huygens of two pendulum clocks exhibiting anti-phase or in-phase synchronized motion. Huygens did observe that there is a "medium" responsible for the synchronized motion, namely the bar to which the pendula are attached. However, despite the remarkably correct observation of Huygens, even today a complete rigorous mathematical explanation of this phenomenon, using proper models for pendula and flexible coupling bar, is still missing. The purpose of this thesis is to further pursue the nature of the synchronized motion occurring in coupled oscillators. The first part, addresses the problem of natural synchronization of arbitrary self-sustained oscillators with Huygens coupling. This means that in the analysis, the original setup of Huygens’ clocks is slightly modified in the sense that each pendulum clock is replaced by an arbitrary second order nonlinear oscillator and instead of the flexible wooden bar (called here Huygens’ coupling), a rigid bar of one degree of freedom is considered. Each oscillator is provided with a control input in order to guarantee steady-state oscillations. This requirement of having a control input to sustain the oscillations can be linked to Huygens’ pendulum clocks, where each pendulum is equipped with an escapement mechanism, which provides an impulsive force to the pendulum in order to keep the clocks running. Then, it is shown that the synchronized motion in the oscillators is independent of the kind of controller used to maintain the oscillations. Rather, the coupling bar, i.e. Huygens’ coupling is considered as the key element in the occurrence of synchronization. In particular, it is shown that the mass of the coupling bar determines the eventual synchronized behaviour in the oscillators, namely in-phase and anti-phase synchronization. The Poincaré method is used in order to determine the existence and stability of these synchronous motions. This is feasible since in the system there exists a natural small parameter, namely the coupling strength, which value is determined by the mass of the coupling bar. Next, the synchronization problem is addressed from a control point of view. First, the synchronization problem of two chaotic oscillators with Huygens’ coupling is discussed. It is shown that by driving the coupling bar with an external periodic excitation, it is possible to trigger the onset of chaos in the oscillators. The mass of the coupling bar is considered as the bifurcation parameter. When the oscillators are in a chaotic state, the synchronization phenomenon will not occur naturally. Consequently, it is demonstrated that by using a master-slave configuration or a mutual synchronization scheme, it is possible to achieve (controlled) synchronization. Secondly, the effect of time delay in the synchronized motion of oscillators with Huygens’ coupling is investigated. In this case, the wooden bar, is replaced by a representative dynamical system. This dynamical system generates a suitable control input for the oscillators such that in closed loop the system resembles a pair of oscillators with Huygens’ coupling. Under this approach, the oscillators do not need to be at the same location and moreover, the dynamical system generating the control input should be implemented separately, using for instance a computer. Consequently, the possibility of having communication time-delays (either in the oscillators or in the applied control input) comes into play. Then, the onset of in-phase and anti-phase synchronization in the coupled/controlled oscillators is studied as a function of the coupling strength and the time delay. In addition to computer simulations, the (natural and controlled) synchronized motion of the oscillators is validated by means of experiments. These experiments are performed in an experimental platform consisting of an elastically supported (controllable) rigid bar (in Huygens’ example the wooden bar) and two (controllable) mass-spring-damper oscillators (the pendulum clocks in Huygens’ case). A key feature of this platform is that its dynamical behaviour can be adjusted. This is possible due to the fact that the oscillators and the coupling bar can be actuated independently, then by using feedback, specific desirable oscillators’ dynamics are enforced and likewise the behaviour of the coupling bar is modified. This feature is exploited in order to experimentally study synchronous behaviour in a wide variety of dynamical systems. Another question considered in this thesis is related to the modeling of the real Huygens experiment. The models used in the first part of this thesis and the ones reported in the literature are simplifications of the real model: the coupling bar has been considered as a rigid body of one degree of freedom. However, in the real Huygens experiment, the bar to which the clocks are attached is indeed an infinite dimensional system for which a rigorous study of the in-phase and antiphase synchronized motion of the two pendula is, as far as is known, still never addressed in the literature. The second part of the thesis focuses on this. A Finite Element Modelling technique is used in order to derive a model consisting of a (finite) set of ordinary differential equations. Numerical results illustrating all the possible stationary solutions of the "true" infinite dimensional Huygens problem are included. In summary, the results contained in the thesis in fact reveal that the synchronized motion observed by Huygens extends beyond pendulum clocks

    Vibration analysis and intelligent control of flexible rotor systems using smart materials

    Get PDF
    Flexible rotor-bearing system stability is a very important subject impacting the design, control, maintenance and operating safety. As the rotor bearing-system dynamic nonlinearities are significantly more prominent at higher rotating speeds, the demand for better performance through higher speeds has rendered the use of linear approaches for analysis both inadequate and ineffective. To address this need, it becomes important that nonlinear rotor-dynamic responses indicative of the causes of nonlinearity, along with the bifurcated dynamic states of instabilities, be fully studied. The objectives of this research are to study rotor-dynamic instabilities induced by mass unbalance and to use smart materials to stabilise the performance of the flexible rotor-system. A comprehensive mathematical model incorporating translational and rotational inertia, bending stiffness and gyroscopic moment is developed. The dynamic end conditions of the rotor comprising of the active bearing-induced axial force is modelled, the equations of motion are derived using Lagrange equations and the Rayleigh-Ritz method is used to study the basic phenomena on simple systems. In this thesis the axial force terms included in the equations of motion provide a means for axially directed harmonic force to be introduced into the system. The Method of Multiple Scales is applied to study the nonlinear equations obtained and their stabilities. The Dynamics 2 software is used to numerically explore the inception and progression of bifurcations suggestive of the changing rotor-dynamic state and impending instability. In the context of active control of flexible rotors, smart materials particularly SMAs and piezoelectric stack actuators are introduced. The application of shape memory alloy (SMA) elements integrated within glass epoxy composite plates and shells has resulted in the design of a novel smart bearing based on the principle of antagonistic action in this thesis. Previous work has shown that a single SMA/composite active bearing can be very effective in both altering the natural frequency of the fundamental whirl mode as well as the modal amplitude. The drawback with that design has been the disparity in the time constant between the relatively fast heating phase and the much slower cooling phase which is reliant on forced air, or some other form of cooling. This thesis presents a modified design which removes the aforementioned existing shortcomings. This form of design means that the cooling phase of one half, still using forced air, is significantly assisted by switching the other half into its heating phase, and vice versa, thereby equalising the time constants, and giving a faster push-pull load on the centrally located bearing; a loading which is termed ‘antagonistic’ in this present dissertation. The piezoelectric stack actuator provides an account of an investigation into possible dynamic interactions between two nonlinear systems, each possessing nonlinear characteristics in the frequency domain. Parametric excitations are deliberately introduced into a second flexible rotor system by means of a piezoelectric exciter to moderate the response of the pre-existing mass-unbalance vibration inherent to the rotor. The intended application area for this SMA/composite and piezoelectric technologies are in industrial rotor systems, in particular very high-speed plant, such as small light pumps, motor generators, and engines for aerospace and automotive application

    Mathematical and Numerical Aspects of Dynamical System Analysis

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    corecore