907 research outputs found

    Discontinuity Preserving Noise Removal Method based on Anisotropic Diffusion for Band Pass Signals

    No full text
    nonlinear discontinuity-preserving method for noise removal for band pass signals such as signals modulated with Binary Phase-Shift Keying (BPSK) modulation is proposed in this paper. This method is inspired by the anisotropic diffusion algorithm to remove noise and preserve discontinuities in band pass signals modulated with a single frequency. It is demonstrated here that nonlinear noise removal method for a real valued band pass signal requires a solution for a nonlinear partial differential equation which is of fourth order in space and second order in time. The results presented in this work show better performance in nonlinear noise removal for real valued band pass signals in comparison with the previous work in the literature

    Nonlinear Spectral Geometry Processing via the TV Transform

    Full text link
    We introduce a novel computational framework for digital geometry processing, based upon the derivation of a nonlinear operator associated to the total variation functional. Such operator admits a generalized notion of spectral decomposition, yielding a sparse multiscale representation akin to Laplacian-based methods, while at the same time avoiding undesirable over-smoothing effects typical of such techniques. Our approach entails accurate, detail-preserving decomposition and manipulation of 3D shape geometry while taking an especially intuitive form: non-local semantic details are well separated into different bands, which can then be filtered and re-synthesized with a straightforward linear step. Our computational framework is flexible, can be applied to a variety of signals, and is easily adapted to different geometry representations, including triangle meshes and point clouds. We showcase our method throughout multiple applications in graphics, ranging from surface and signal denoising to detail transfer and cubic stylization.Comment: 16 pages, 20 figure

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    AUTOMATED ESTIMATION, REDUCTION, AND QUALITY ASSESSMENT OF VIDEO NOISE FROM DIFFERENT SOURCES

    Get PDF
    Estimating and removing noise from video signals is important to increase either the visual quality of video signals or the performance of video processing algorithms such as compression or segmentation where noise estimation or reduction is a pre-processing step. To estimate and remove noise, effective methods use both spatial and temporal information to increase the reliability of signal extraction from noise. The objective of this thesis is to introduce a video system having three novel techniques to estimate and reduce video noise from different sources, both effectively and efficiently and assess video quality without considering a reference non-noisy video. The first (intensity-variances based homogeneity classification) technique estimates visual noise of different types in images and video signals. The noise can be white Gaussian noise, mixed Poissonian- Gaussian (signal-dependent white) noise, or processed (frequency-dependent) noise. The method is based on the classification of intensity-variances of signal patches in order to find homogeneous regions that best represent the noise signal in the input signal. The method assumes that noise is signal-independent in each intensity class. To find homogeneous regions, the method works on the downsampled input image and divides it into patches. Each patch is assigned to an intensity class, whereas outlier patches are rejected. Then the most homogeneous cluster is selected and its noise variance is considered as the peak of noise variance. To account for processed noise, we estimate the degree of spatial correlation. To account for temporal noise variations a stabilization process is proposed. We show that the proposed method competes related state-of-the-art in noise estimation. The second technique provides solutions to remove real-world camera noise such as signal-independent, signal-dependent noise, and frequency-dependent noise. Firstly, we propose a noise equalization method in intensity and frequency domain which enables a white Gaussian noise filter to handle real noise. Our experiments confirm the quality improvement under real noise while white Gaussian noise filter is used with our equalization method. Secondly, we propose a band-limited time-space video denoiser which reduces video noise of different types. This denoiser consists of: 1) intensity-domain noise equalization to account for signal dependency, 2) band-limited anti-blocking time-domain filtering of current frame using motion-compensated previous and subsequent frames, 3) spatial filtering combined with noise frequency equalizer to remove residual noise left from temporal filtering, and 4) intensity de-equalization to invert the first step. To decrease the chance of motion blur, temporal weights are calculated using two levels of error estimation; coarse (blocklevel) and fine (pixel-level). We correct the erroneous motion vectors by creating a homography from reliable motion vectors. To eliminate blockiness in block-based temporal filter, we propose three ideas: interpolation of block-level error, a band-limited filtering by subtracting the back-signal beforehand, and two-band motion compensation. The proposed time-space filter is parallelizable to be significantly accelerated by GPU. We show that the proposed method competes related state-ofthe- art in video denoising. The third (sparsity and dominant orientation quality index) technique is a new method to assess the quality of the denoised video frames without a reference (clean frames). In many image and video applications, a quantitative measure of image content, noise, and blur is required to facilitate quality assessment, when the ground-truth is not available. We propose a fast method to find the dominant orientation of image patches, which is used to decompose them into singular values. Combining singular values with the sparsity of the patch in the transform domain, we measure the possible image content and noise of the patches and of the whole image. To measure the effect of noise accurately, our method takes both low and high textured patches into account. Before analyzing the patches, we apply a shrinkage in the transform domain to increase the contrast of genuine image structure. We show that the proposed method is useful to select parameters of denoising algorithms automatically in different noise scenarios such as white Gaussian and real noise. Our objective and subjective results confirm the correspondence between the measured quality and the ground-truth and proposed method rivals related state-of-the-art approaches
    • …
    corecore