17 research outputs found

    Measuring pedestrian gait using low resolution infrared people counters

    Get PDF
    This thesis describes research conducted into the measure- ment of pedestrian movement. It starts with an examination of current pedestrian detection and tracking systems, looking at several different technologies including image-processing systems. It highlights, as other authors have, that there is still a substantial gap between the abilities of existing pedestrian measurement and tracking systems and the requirements of users of such systems. After the review it provides an introduction to human gait and its use as a biometric. It then examines the IRISYS people counter, a low resolution infrared detector, used for this research. The detector's advantages and disadvantages are discussed, a detailed description of the data produced is provided. The thesis then describes in detail a study establishing that human gait information can be measured by the IRISYS people counter. It examines the use of the detectors in stereo to measure the height of the people; however the results are not impressive. During this investigation the presence of oscillations likely to relate to this walking gait is noted in the data. A second study is carried out confirming that the noted oscillation originates from human gait and further data is gathered to enable the development of measurement algorithms. The magnitude of the walking oscillation noted is examined in detail. It is found to be both individualistic and highly correlated to gender. A gender distribution algorithm is presented and evaluated on data captured in two different locations. These show very promising results. Several different methods are described for processing the infor-mation to extract a measure of cadence. The cadence is found to be individualistic and shows interesting correlations to height and leg length. This thesis advances the field of pedestrian measurement by conducting pedestrian motion studies and developing algorithms for measuring human gait.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Measuring pedestrian gait using low resolution infrared people counters

    Get PDF
    This thesis describes research conducted into the measure- ment of pedestrian movement. It starts with an examination of current pedestrian detection and tracking systems, looking at several different technologies including image-processing systems. It highlights, as other authors have, that there is still a substantial gap between the abilities of existing pedestrian measurement and tracking systems and the requirements of users of such systems.After the review it provides an introduction to human gait and its use as a biometric. It then examines the IRISYS people counter, a low resolution infrared detector, used for this research. The detector's advantages and disadvantages are discussed, a detailed description of the data produced is provided. The thesis then describes in detail a study establishing that human gait information can be measured by the IRISYS people counter. It examines the use of the detectors in stereo to measure the height of the people; however the results are not impressive. During this investigation the presence of oscillations likely to relate to this walking gait is noted in the data.A second study is carried out confirming that the noted oscillation originates from human gait and further data is gathered to enable the development of measurement algorithms. The magnitude of the walking oscillation noted is examined in detail. It is found to be both individualistic and highly correlated to gender. A gender distribution algorithm is presented and evaluated on data captured in two different locations. These show very promising results. Several different methods are described for processing the infor-mation to extract a measure of cadence. The cadence is found to be individualistic and shows interesting correlations to height and leg length.This thesis advances the field of pedestrian measurement by conducting pedestrian motion studies and developing algorithms for measuring human gait

    Fruit Detection and Tree Segmentation for Yield Mapping in Orchards

    Get PDF
    Accurate information gathering and processing is critical for precision horticulture, as growers aim to optimise their farm management practices. An accurate inventory of the crop that details its spatial distribution along with health and maturity, can help farmers efficiently target processes such as chemical and fertiliser spraying, crop thinning, harvest management, labour planning and marketing. Growers have traditionally obtained this information by using manual sampling techniques, which tend to be labour intensive, spatially sparse, expensive, inaccurate and prone to subjective biases. Recent advances in sensing and automation for field robotics allow for key measurements to be made for individual plants throughout an orchard in a timely and accurate manner. Farmer operated machines or unmanned robotic platforms can be equipped with a range of sensors to capture a detailed representation over large areas. Robust and accurate data processing techniques are therefore required to extract high level information needed by the grower to support precision farming. This thesis focuses on yield mapping in orchards using image and light detection and ranging (LiDAR) data captured using an unmanned ground vehicle (UGV). The contribution is the framework and algorithmic components for orchard mapping and yield estimation that is applicable to different fruit types and orchard configurations. The framework includes detection of fruits in individual images and tracking them over subsequent frames. The fruit counts are then associated to individual trees, which are segmented from image and LiDAR data, resulting in a structured spatial representation of yield. The first contribution of this thesis is the development of a generic and robust fruit detection algorithm. Images captured in the outdoor environment are susceptible to highly variable external factors that lead to significant appearance variations. Specifically in orchards, variability is caused by changes in illumination, target pose, tree types, etc. The proposed techniques address these issues by using state-of-the-art feature learning approaches for image classification, while investigating the utility of orchard domain knowledge for fruit detection. Detection is performed using both pixel-wise classification of images followed instance segmentation, and bounding-box regression approaches. The experimental results illustrate the versatility of complex deep learning approaches over a multitude of fruit types. The second contribution of this thesis is a tree segmentation approach to detect the individual trees that serve as a standard unit for structured orchard information systems. The work focuses on trellised trees, which present unique challenges for segmentation algorithms due to their intertwined nature. LiDAR data are used to segment the trellis face, and to generate proposals for individual trees trunks. Additional trunk proposals are provided using pixel-wise classification of the image data. The multi-modal observations are fine-tuned by modelling trunk locations using a hidden semi-Markov model (HSMM), within which prior knowledge of tree spacing is incorporated. The final component of this thesis addresses the visual occlusion of fruit within geometrically complex canopies by using a multi-view detection and tracking approach. Single image fruit detections are tracked over a sequence of images, and associated to individual trees or farm rows, with the spatial distribution of the fruit counting forming a yield map over the farm. The results show the advantage of using multi-view imagery (instead of single view analysis) for fruit counting and yield mapping. This thesis includes extensive experimentation in almond, apple and mango orchards, with data captured by a UGV spanning a total of 5 hectares of farm area, over 30 km of vehicle traversal and more than 7,000 trees. The validation of the different processes is performed using manual annotations, which includes fruit and tree locations in image and LiDAR data respectively. Additional evaluation of yield mapping is performed by comparison against fruit counts on trees at the farm and counts made by the growers post-harvest. The framework developed in this thesis is demonstrated to be accurate compared to ground truth at all scales of the pipeline, including fruit detection and tree mapping, leading to accurate yield estimation, per tree and per row, for the different crops. Through the multitude of field experiments conducted over multiple seasons and years, the thesis presents key practical insights necessary for commercial development of an information gathering system in orchards

    Scan matching for terrain mapping in open-pit mining

    Get PDF

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    Precision Agriculture Technology for Crop Farming

    Get PDF
    This book provides a review of precision agriculture technology development, followed by a presentation of the state-of-the-art and future requirements of precision agriculture technology. It presents different styles of precision agriculture technologies suitable for large scale mechanized farming; highly automated community-based mechanized production; and fully mechanized farming practices commonly seen in emerging economic regions. The book emphasizes the introduction of core technical features of sensing, data processing and interpretation technologies, crop modeling and production control theory, intelligent machinery and field robots for precision agriculture production

    3D Multi-Field Multi-Scale Features From Range Data In Spacecraft Proximity Operations

    Get PDF
    A fundamental problem in spacecraft proximity operations is the determination of the 6 degree of freedom relative navigation solution between the observer reference frame and a reference frame tied to a proximal body. For the most unconstrained case, the proximal body may be uncontrolled, and the observer spacecraft has no a priori information on the body. A spacecraft in this scenario must simultaneously map the generally poorly known body being observed, and safely navigate relative to it. Simultaneous localization and mapping(SLAM)is a difficult problem which has been the focus of research in recent years. The most promising approaches extract local features in 2D or 3D measurements and track them in subsequent observations by means of matching a descriptor. These methods exist for both active sensors such as Light Detection and Ranging(LIDAR) or laser RADAR(LADAR), and passive sensors such as CCD and CMOS camera systems. This dissertation presents a method for fusing time of flight(ToF) range data inherent to scanning LIDAR systems with the passive light field measurements of optical systems, extracting features which exploit information from each sensor, and solving the unique SLAM problem inherent to spacecraft proximity operations. Scale Space analysis is extended to unstructured 3D point clouds by means of an approximation to the Laplace Beltrami operator which computes the scale space on a manifold embedded in 3D object space using Gaussian convolutions based on a geodesic distance weighting. The construction of the scale space is shown to be equivalent to both the application of the diffusion equation to the surface data, as well as the surface evolution process which results from mean curvature flow. Geometric features are localized in regions of high spatial curvature or large diffusion displacements at multiple scales. The extracted interest points are associated with a local multi-field descriptor constructed from measured data in the object space. Defining features in object space instead of image space is shown to bean important step making the simultaneous consideration of co-registered texture and the associated geometry possible. These descriptors known as Multi-Field Diffusion Flow Signatures encode the shape, and multi-texture information of local neighborhoods in textured range data. Multi-Field Diffusion Flow Signatures display utility in difficult space scenarios including high contrast and saturating lighting conditions, bland and repeating textures, as well as non-Lambertian surfaces. The effectiveness and utility of Multi-Field Multi-Scale(MFMS) Features described by Multi-Field Diffusion Flow Signatures is evaluated using real data from proximity operation experiments performed at the Land Air and Space Robotics(LASR) Laboratory at Texas A&M University
    corecore