1,458 research outputs found

    Disaster-Resilient Control Plane Design and Mapping in Software-Defined Networks

    Full text link
    Communication networks, such as core optical networks, heavily depend on their physical infrastructure, and hence they are vulnerable to man-made disasters, such as Electromagnetic Pulse (EMP) or Weapons of Mass Destruction (WMD) attacks, as well as to natural disasters. Large-scale disasters may cause huge data loss and connectivity disruption in these networks. As our dependence on network services increases, the need for novel survivability methods to mitigate the effects of disasters on communication networks becomes a major concern. Software-Defined Networking (SDN), by centralizing control logic and separating it from physical equipment, facilitates network programmability and opens up new ways to design disaster-resilient networks. On the other hand, to fully exploit the potential of SDN, along with data-plane survivability, we also need to design the control plane to be resilient enough to survive network failures caused by disasters. Several distributed SDN controller architectures have been proposed to mitigate the risks of overload and failure, but they are optimized for limited faults without addressing the extent of large-scale disaster failures. For disaster resiliency of the control plane, we propose to design it as a virtual network, which can be solved using Virtual Network Mapping techniques. We select appropriate mapping of the controllers over the physical network such that the connectivity among the controllers (controller-to-controller) and between the switches to the controllers (switch-to-controllers) is not compromised by physical infrastructure failures caused by disasters. We formally model this disaster-aware control-plane design and mapping problem, and demonstrate a significant reduction in the disruption of controller-to-controller and switch-to-controller communication channels using our approach.Comment: 6 page

    A disaster-resilient multi-content optical datacenter network architecture

    Get PDF
    Cloud services based on datacenter networks are becoming very important. Optical networks are well suited to meet the demands set by the high volume of traffic between datacenters, given their high bandwidth and low-latency characteristics. In such networks, path protection against network failures is generally ensured by providing a backup path to the same destination, which is link-disjoint to the primary path. This protection fails to protect against disasters covering an area which disrupts both primary and backup resources. Also, content/service protection is a fundamental problem in datacenter networks, as the failure of a single datacenter should not cause the disappearance of a specific content/service from the network. Content placement, routing and protection of paths and content are closely related to one another, so the interaction among these should be studied together. In this work, we propose an integrated ILP formulation to design an optical datacenter network, which solves all the above-mentioned problems simultaneously. We show that our disaster protection scheme exploiting anycasting provides more protection, but uses less capacity, than dedicated single-link protection. We also show that a reasonable number of datacenters and selective content replicas with intelligent network design can provide survivability to disasters while supporting user demands

    Minimizing the disaster risk in optical telecom networks

    Get PDF

    Disaster survivability for optical fiber networks

    Get PDF
    The project proposes on developing a simulation tool for studying the impact of circular based disasters towards an optical network topology. The main contribution of the proposed method is to provide important input to the development of network topology to support the efforts to mitigate the effects of regional disasters. The problem is solved by using Waxman random graph for representing the connectivity of optical fibers on a rectangular plane and model probable circular disaster for representing as disaster events. A comprehensive verification using MATLAB is carried out to model the network topology and circular based disaster. In particular, the availability of each optical network is computed by using mathematical formula for quantifying the impact of the disaster events to the network as the outcome of this project
    corecore