288 research outputs found

    Disaster management using D2D communication with power transfer and clustering techniques

    Get PDF
    Device-to-device (D2D) communications as an underlay to cellular networks can not only increase the system capacity and energy efficiency but also enable national security and public safety services. A key requirement for these services is to provide alternative access to cellular networks when they are partially or fully damaged due to a natural disaster event. In this paper, we employ energy harvesting (EH) at the relay with simultaneous wireless information and power transfer to prolong the lifetime of energy constrained network. In particular, we consider a user equipment relay that harvests energy from radio frequency signal via base station and use harvested energy for D2D communications. We integrate clustering technique with D2D communications into cellular networks such that communication services can be maintained when the cellular infrastructure becomes partially dysfunctional. Simulation results show that our proposed EH-based D2D clustering model performs efficiently in terms of coverage, energy efficiency, and cluster formation to extend the communication area. Moreover, a novel concept of power transfer in D2D clustering with user equipment relay and cluster head is proposed to provide a new framework to handle critical and emergency situations. The proposed approach is shown to provide significant energy saving for both mobile users and clustering heads to survive in emergency and disaster situations

    Disaster management using D2D communication with power transfer and clustering techniques

    Get PDF
    Device-to-device (D2D) communications as an underlay to cellular networks can not only increase the system capacity and energy efficiency but also enable national security and public safety services. A key requirement for these services is to provide alternative access to cellular networks when they are partially or fully damaged due to a natural disaster event. In this paper, we employ energy harvesting (EH) at the relay with simultaneous wireless information and power transfer to prolong the lifetime of energy constrained network. In particular, we consider a user equipment relay that harvests energy from radio frequency signal via base station and use harvested energy for D2D communications. We integrate clustering technique with D2D communications into cellular networks such that communication services can be maintained when the cellular infrastructure becomes partially dysfunctional. Simulation results show that our proposed EH-based D2D clustering model performs efficiently in terms of coverage, energy efficiency, and cluster formation to extend the communication area. Moreover, a novel concept of power transfer in D2D clustering with user equipment relay and cluster head is proposed to provide a new framework to handle critical and emergency situations. The proposed approach is shown to provide significant energy saving for both mobile users and clustering heads to survive in emergency and disaster situations

    Architecture design for disaster resilient management network using D2D technology

    Get PDF
    Huge damages from natural disasters, such as earthquakes, floods, landslide, tsunamis, have been reported in recent years, claiming many lives, rendering millions homeless and causing huge financial losses worldwide. The lack of effective communication between the public rescue/safety agencies, rescue teams, first responders and trapped survivors/victims makes the situation even worse. Factors like dysfunctional communication networks, limited communications capacity, limited resources/services, data transformation and effective evaluation, energy, and power deficiency cause unnecessary hindrance in rescue and recovery services during a disaster. The new wireless communication technologies are needed to enhance life-saving capabilities and rescue services. In general, in order to improve societal resilience towards natural catastrophes and develop effective communication infrastructure, innovative approaches need to be initiated to provide improved quality, better connectivity in the events of natural and human disasters. In this thesis, a disaster resilient network architecture is proposed and analysed using multi-hop communications, clustering, energy harvesting, throughput optimization, reliability enhancement, adaptive selection, and low latency communications. It also examines the importance of mode selection, power management, frequency and time resource allocation to realize the promises of Long-term Evolution (LTE) Device to Device (D2D) communication. In particular, to support resilient and energy efficient communication in disaster-affected areas. This research is examined by thorough and vigorous simulations and validated through mathematical modelling. Overall, the impact of this research is twofold: i) it provides new technologies for effective inter- and intra-agency coordination system during a disaster event by establishing a stronger and resilient communication; and ii) It offers a potential solution for stakeholders such as governments, rescue teams, and general public with new informed information on how to establish effective policies to cope with challenges before, during and after the disaster events

    Device-to-device based path selection for post disaster communication using hybrid intelligence

    Get PDF
    Public safety network communication methods are concurrence with emerging networks to provide enhanced strategies and services for catastrophe management. If the cellular network is damaged after a calamity, a new-generation network like the internet of things (IoT) is ready to assure network access. In this paper, we suggested a framework of hybrid intelligence to find and re-connect the isolated nodes to the functional area to save life. We look at a situation in which the devices in the hazard region can constantly monitor the radio environment to self-detect the occurrence of a disaster, switch to the device-to-device (D2D) communication mode, and establish a vital connection. The oscillating spider monkey optimization (OSMO) approach forms clusters of the devices in the disaster area to improve network efficiency. The devices in the secluded area use the cluster heads as relay nodes to the operational site. An oscillating particle swarm optimization (OPSO) with a priority-based path encoding technique is used for path discovery. The suggested approach improves the energy efficiency of the network by selecting a routing path based on the remaining energy of the device, channel quality, and hop count, thus increasing network stability and packet delivery

    Establishing effective communications in disaster affected areas and artificial intelligence based detection using social media platform

    Get PDF
    Floods, earthquakes, storm surges and other natural disasters severely affect the communication infrastructure and thus compromise the effectiveness of communications dependent rescue and warning services. In this paper, a user centric approach is proposed to establish communications in disaster affected and communication outage areas. The proposed scheme forms ad hoc clusters to facilitate emergency communications and connect end-users/ User Equipment (UE) to the core network. A novel cluster formation with single and multi-hop communication framework is proposed. The overall throughput in the formed clusters is maximized using convex optimization. In addition, an intelligent system is designed to label different clusters and their localities into affected and non-affected areas. As a proof of concept, the labeling is achieved on flooding dataset where region specific social media information is used in proposed machine learning techniques to classify the disaster-prone areas as flooded or unflooded. The suitable results of the proposed machine learning schemes suggest its use along with proposed clustering techniques to revive communications in disaster affected areas and to classify the impact of disaster for different locations in disaster-prone areas

    Aerial base stations with opportunistic links for next generation emergency communications

    Get PDF
    Rapidly deployable and reliable mission-critical communication networks are fundamental requirements to guarantee the successful operations of public safety officers during disaster recovery and crisis management preparedness. The ABSOLUTE project focused on designing, prototyping, and demonstrating a high-capacity IP mobile data network with low latency and large coverage suitable for many forms of multimedia delivery including public safety scenarios. The ABSOLUTE project combines aerial, terrestrial, and satellites communication networks for providing a robust standalone system able to deliver resilience communication systems. This article focuses on describing the main outcomes of the ABSOLUTE project in terms of network and system architecture, regulations, and implementation of aerial base stations, portable land mobile units, satellite backhauling, S-MIM satellite messaging, and multimode user equipments
    corecore