4 research outputs found

    Word Sense Disambiguation Based on Large Scale Polish CLARIN Heterogeneous Lexical Resources

    Get PDF
    Word Sense Disambiguation Based on Large Scale Polish CLARIN Heterogeneous Lexical Resources Lexical resources can be applied in many different Natural Language Engineering tasks, but the most fundamental task is the recognition of word senses used in text contexts. The problem is difficult, not yet fully solved and different lexical resources provided varied support for it. Polish CLARIN lexical semantic resources are based on the plWordNet — a very large wordnet for Polish — as a central structure which is a basis for linking together several resources of different types. In this paper, several Word Sense Disambiguation (henceforth WSD) methods developed for Polish that utilise plWordNet are discussed. Textual sense descriptions in the traditional lexicon can be compared with text contexts using Lesk’s algorithm in order to find best matching senses. In the case of a wordnet, lexico-semantic relations provide the main description of word senses. Thus, first, we adapted and applied to Polish a WSD method based on the Page Rank. According to it, text words are mapped on their senses in the plWordNet graph and Page Rank algorithm is run to find senses with the highest scores. The method presents results lower but comparable to those reported for English. The error analysis showed that the main problems are: fine grained sense distinctions in plWordNet and limited number of connections between words of different parts of speech. In the second approach plWordNet expanded with the mapping onto the SUMO ontology concepts was used. Two scenarios for WSD were investigated: two step disambiguation and disambiguation based on combined networks of plWordNet and SUMO. In the former scenario, words are first assigned SUMO concepts and next plWordNet senses are disambiguated. In latter, plWordNet and SUMO are combined in one large network used next for the disambiguation of senses. The additional knowledge sources used in WSD improved the performance. The obtained results and potential further lines of developments were discussed

    Word Sense Disambiguation Based on Large Scale Polish CLARIN Heterogeneous Lexical Resources

    Get PDF
    Word Sense Disambiguation Based on Large Scale Polish CLARIN Heterogeneous Lexical ResourcesLexical resources can be applied in many different Natural Language Engineering tasks, but the most fundamental task is the recognition of word senses used in text contexts. The problem is difficult, not yet fully solved and different lexical resources provided varied support for it. Polish CLARIN lexical semantic resources are based on the plWordNet — a very large wordnet for Polish — as a central structure which is a basis for linking together several resources of different types. In this paper, several Word Sense Disambiguation (henceforth WSD) methods developed for Polish that utilise plWordNet are discussed. Textual sense descriptions in the traditional lexicon can be compared with text contexts using Lesk’s algorithm in order to find best matching senses. In the case of a wordnet, lexico-semantic relations provide the main description of word senses. Thus, first, we adapted and applied to Polish a WSD method based on the Page Rank. According to it, text words are mapped on their senses in the plWordNet graph and Page Rank algorithm is run to find senses with the highest scores. The method presents results lower but comparable to those reported for English. The error analysis showed that the main problems are: fine grained sense distinctions in plWordNet and limited number of connections between words of different parts of speech. In the second approach plWordNet expanded with the mapping onto the SUMO ontology concepts was used. Two scenarios for WSD were investigated: two step disambiguation and disambiguation based on combined networks of plWordNet and SUMO. In the former scenario, words are first assigned SUMO concepts and next plWordNet senses are disambiguated. In latter, plWordNet and SUMO are combined in one large network used next for the disambiguation of senses. The additional knowledge sources used in WSD improved the performance. The obtained results and potential further lines of developments were discussed

    Tune your brown clustering, please

    Get PDF
    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly unexplored. Accordingly, we present information for practitioners on the behaviour of Brown clustering in order to assist hyper-parametre tuning, in the form of a theoretical model of Brown clustering utility. This model is then evaluated empirically in two sequence labelling tasks over two text types. We explore the dynamic between the input corpus size, chosen number of classes, and quality of the resulting clusters, which has an impact for any approach using Brown clustering. In every scenario that we examine, our results reveal that the values most commonly used for the clustering are sub-optimal

    Disambiguating Wikipedia Articles on the Basis of plWordNet Lexico-semantic Relations

    No full text
    corecore