1,532 research outputs found

    The role of terminators and occlusion cues in motion integration and segmentation: a neural network model

    Get PDF
    The perceptual interaction of terminators and occlusion cues with the functional processes of motion integration and segmentation is examined using a computational model. Inte-gration is necessary to overcome noise and the inherent ambiguity in locally measured motion direction (the aperture problem). Segmentation is required to detect the presence of motion discontinuities and to prevent spurious integration of motion signals between objects with different trajectories. Terminators are used for motion disambiguation, while occlusion cues are used to suppress motion noise at points where objects intersect. The model illustrates how competitive and cooperative interactions among cells carrying out these functions can account for a number of perceptual effects, including the chopsticks illusion and the occluded diamond illusion. Possible links to the neurophysiology of the middle temporal visual area (MT) are suggested

    Computational principles for an autonomous active vision system

    Full text link
    Vision research has uncovered computational principles that generalize across species and brain area. However, these biological mechanisms are not frequently implemented in computer vision algorithms. In this thesis, models suitable for application in computer vision were developed to address the benefits of two biologically-inspired computational principles: multi-scale sampling and active, space-variant, vision. The first model investigated the role of multi-scale sampling in motion integration. It is known that receptive fields of different spatial and temporal scales exist in the visual cortex; however, models addressing how this basic principle is exploited by species are sparse and do not adequately explain the data. The developed model showed that the solution to a classical problem in motion integration, the aperture problem, can be reframed as an emergent property of multi-scale sampling facilitated by fast, parallel, bi-directional connections at different spatial resolutions. Humans and most other mammals actively move their eyes to sample a scene (active vision); moreover, the resolution of detail in this sampling process is not uniform across spatial locations (space-variant). It is known that these eye-movements are not simply guided by image saliency, but are also influenced by factors such as spatial attention, scene layout, and task-relevance. However, it is seldom questioned how previous eye movements shape how one learns and recognizes an object in a continuously-learning system. To explore this question, a model (CogEye) was developed that integrates active, space-variant sampling with eye-movement selection (the where visual stream), and object recognition (the what visual stream). The model hypothesizes that a signal from the recognition system helps the where stream select fixation locations that best disambiguate object identity between competing alternatives. The third study used eye-tracking coupled with an object disambiguation psychophysics experiment to validate the second model, CogEye. While humans outperformed the model in recognition accuracy, when the model used information from the recognition pathway to help select future fixations, it was more similar to human eye movement patterns than when the model relied on image saliency alone. Taken together these results show that computational principles in the mammalian visual system can be used to improve computer vision models

    Why Unaccusatives Have it Easy: Reduced Relative Garden Path Effects and Verb Type

    Get PDF
    This paper provides a new account for why unaccusative verbs are easier to process than unergative verbs in the reduced relative garden path construction, as demonstrated in Stevenson and Merlo [1997]. Reanalysis to the passivized reduced relative clause form requires the verb to be causative. Stevenson and Merlo [1997] argued that unaccusatives are causativized in the lexicon, while unergatives are causativized in the syntax. This account argues instead that an independently attested co-occurrence restriction contributes to greater initial ambiguity in the unergative case; causative unergatives require an argument/directional attachment of prepositional phrase [Hoekstra, 1988, Levin and Rappaport-Hovav, 1995, Folli and Harley, 2006].We implement the unergative-PP co-occurrence restriction in Minimalist Grammars [Stabler, 1997]. We model the contribution of prepositional phrase ambiguity to unergative reduced relative ambiguity with Entropy Reduction [Hale, 2003]. We obtain greater Entropy Reductions for the unergative condition, modeling that human comprehenders are more taxed by compounded ambiguity

    Disambiguating Visual Verbs

    Get PDF

    A Connectionist Theory of Phenomenal Experience

    Get PDF
    When cognitive scientists apply computational theory to the problem of phenomenal consciousness, as many of them have been doing recently, there are two fundamentally distinct approaches available. Either consciousness is to be explained in terms of the nature of the representational vehicles the brain deploys; or it is to be explained in terms of the computational processes defined over these vehicles. We call versions of these two approaches vehicle and process theories of consciousness, respectively. However, while there may be space for vehicle theories of consciousness in cognitive science, they are relatively rare. This is because of the influence exerted, on the one hand, by a large body of research which purports to show that the explicit representation of information in the brain and conscious experience are dissociable, and on the other, by the classical computational theory of mind – the theory that takes human cognition to be a species of symbol manipulation. But two recent developments in cognitive science combine to suggest that a reappraisal of this situation is in order. First, a number of theorists have recently been highly critical of the experimental methodologies employed in the dissociation studies – so critical, in fact, it’s no longer reasonable to assume that the dissociability of conscious experience and explicit representation has been adequately demonstrated. Second, classicism, as a theory of human cognition, is no longer as dominant in cognitive science as it once was. It now has a lively competitor in the form of connectionism; and connectionism, unlike classicism, does have the computational resources to support a robust vehicle theory of consciousness. In this paper we develop and defend this connectionist vehicle theory of consciousness. It takes the form of the following simple empirical hypothesis: phenomenal experience consists in the explicit representation of information in neurally realized PDP networks. This hypothesis leads us to re-assess some common wisdom about consciousness, but, we will argue, in fruitful and ultimately plausible ways

    Do You See What I Mean? Visual Resolution of Linguistic Ambiguities

    Get PDF
    Understanding language goes hand in hand with the ability to integrate complex contextual information obtained via perception. In this work, we present a novel task for grounded language understanding: disambiguating a sentence given a visual scene which depicts one of the possible interpretations of that sentence. To this end, we introduce a new multimodal corpus containing ambiguous sentences, representing a wide range of syntactic, semantic and discourse ambiguities, coupled with videos that visualize the different interpretations for each sentence. We address this task by extending a vision model which determines if a sentence is depicted by a video. We demonstrate how such a model can be adjusted to recognize different interpretations of the same underlying sentence, allowing to disambiguate sentences in a unified fashion across the different ambiguity types.Comment: EMNLP 201

    The Complementary Brain: A Unifying View of Brain Specialization and Modularity

    Full text link
    Defense Advanced Research Projects Agency and Office of Naval Research (N00014-95-I-0409); National Science Foundation (ITI-97-20333); Office of Naval Research (N00014-95-I-0657
    • …
    corecore