223 research outputs found

    Fundamental Limits in MIMO Broadcast Channels

    Get PDF
    This paper studies the fundamental limits of MIMO broadcast channels from a high level, determining the sum-rate capacity of the system as a function of system paramaters, such as the number of transmit antennas, the number of users, the number of receive antennas, and the total transmit power. The crucial role of channel state information at the transmitter is emphasized, as well as the emergence of opportunistic transmission schemes. The effects of channel estimation errors, training, and spatial correlation are studied, as well as issues related to fairness, delay and differentiated rate scheduling

    Studies on efficient spectrum sharing in coexisting wireless networks.

    Get PDF
    Wireless communication is facing serious challenges worldwide: the severe spectrum shortage along with the explosive increase of the wireless communication demands. Moreover, different communication networks may coexist in the same geographical area. By allowing multiple communication networks cooperatively or opportunistically sharing the same frequency will potentially enhance the spectrum efficiency. This dissertation aims to investigate important spectrum sharing schemes for coexisting networks. For coexisting networks operating in interweave cognitive radio mode, most existing works focus on the secondary network’s spectrum sensing and accessing schemes. However, the primary network can be selfish and tends to use up all the frequency resource. In this dissertation, a novel optimization scheme is proposed to let primary network maximally release unnecessary frequency resource for secondary networks. The optimization problems are formulated for both uplink and downlink orthogonal frequency-division multiple access (OFDMA)-based primary networks, and near optimal algorithms are proposed as well. For coexisting networks in the underlay cognitive radio mode, this work focuses on the resource allocation in distributed secondary networks as long as the primary network’s rate constraint can be met. Global optimal multicarrier discrete distributed (MCDD) algorithm and suboptimal Gibbs sampler based Lagrangian algorithm (GSLA) are proposed to solve the problem distributively. Regarding to the dirty paper coding (DPC)-based system where multiple networks share the common transmitter, this dissertation focuses on its fundamental performance analysis from information theoretic point of view. Time division multiple access (TDMA) as an orthogonal frequency sharing scheme is also investigated for comparison purpose. Specifically, the delay sensitive quality of service (QoS) requirements are incorporated by considering effective capacity in fast fading and outage capacity in slow fading. The performance metrics in low signal to noise ratio (SNR) regime and high SNR regime are obtained in closed forms followed by the detailed performance analysis

    Dirty paper coding schemes for MIMO broadcast channels

    No full text
    In this paper we propose several dirty paper coding schemes for the broadcast channel when both the transmitter and receivers are equipped with multiple antennas. These coding schemes are based on channel state information at the transmitter and inspired from information-theoretic concepts. The proposed end-to-end algorithms allows us to evaluate the performance of the broadcast channel in terms of bit error rates and not in terms of coding rates as it is usually the case in the corresponding literature. Different inner coding schemes such as the ZF-DPC and MMSE-DPC and different outer coding schemes such as the THS, SCS and TCQ are compared and discussed. We also consider the DPC idea as a way of implementing a multiple access scheme. In this respect it is compared with the well-know TDMA scheme. Sometimes our conclusions show quite surprising results in comparison to what is expected by pure information-theoretic considerations

    Robust Lattice Alignment for K-user MIMO Interference Channels with Imperfect Channel Knowledge

    Full text link
    In this paper, we consider a robust lattice alignment design for K-user quasi-static MIMO interference channels with imperfect channel knowledge. With random Gaussian inputs, the conventional interference alignment (IA) method has the feasibility problem when the channel is quasi-static. On the other hand, structured lattices can create structured interference as opposed to the random interference caused by random Gaussian symbols. The structured interference space can be exploited to transmit the desired signals over the gaps. However, the existing alignment methods on the lattice codes for quasi-static channels either require infinite SNR or symmetric interference channel coefficients. Furthermore, perfect channel state information (CSI) is required for these alignment methods, which is difficult to achieve in practice. In this paper, we propose a robust lattice alignment method for quasi-static MIMO interference channels with imperfect CSI at all SNR regimes, and a two-stage decoding algorithm to decode the desired signal from the structured interference space. We derive the achievable data rate based on the proposed robust lattice alignment method, where the design of the precoders, decorrelators, scaling coefficients and interference quantization coefficients is jointly formulated as a mixed integer and continuous optimization problem. The effect of imperfect CSI is also accommodated in the optimization formulation, and hence the derived solution is robust to imperfect CSI. We also design a low complex iterative optimization algorithm for our robust lattice alignment method by using the existing iterative IA algorithm that was designed for the conventional IA method. Numerical results verify the advantages of the proposed robust lattice alignment method

    When Network Coding and Dirty Paper Coding meet in a Cooperative Ad Hoc Network

    Full text link
    We develop and analyze new cooperative strategies for ad hoc networks that are more spectrally efficient than classical DF cooperative protocols. Using analog network coding, our strategies preserve the practical half-duplex assumption but relax the orthogonality constraint. The introduction of interference due to non-orthogonality is mitigated thanks to precoding, in particular Dirty Paper coding. Combined with smart power allocation, our cooperation strategies allow to save time and lead to more efficient use of bandwidth and to improved network throughput with respect to classical RDF/PDF.Comment: 7 pages, 7 figure

    How much does transmit correlation affect the sum-rate scaling of MIMO Gaussian broadcast channels?

    Get PDF
    This paper considers the effect of spatial correlation between transmit antennas on the sum-rate capacity of the MIMO Gaussian broadcast channel (i.e., downlink of a cellular system). Specifically, for a system with a large number of users n, we analyze the scaling laws of the sum-rate for the dirty paper coding and for different types of beamforming transmission schemes. When the channel is i.i.d., it has been shown that for large n, the sum rate is equal to M log log n + M log P/M + o(1) where M is the number of transmit antennas, P is the average signal to noise ratio, and o(1) refers to terms that go to zero as n → ∞. When the channel exhibits some spatial correlation with a covariance matrix R (non-singular with tr(R) = M), we prove that the sum rate of dirty paper coding is M log log n + M log P/M + log det(R) + o(1). We further show that the sum-rate of various beamforming schemes achieves M log log n + M log P/M + M log c + o(1) where c ≤ 1 depends on the type of beamforming. We can in fact compute c for random beamforming proposed in and more generally, for random beamforming with preceding in which beams are pre-multiplied by a fixed matrix. Simulation results are presented at the end of the paper

    Code designs for MIMO broadcast channels

    Get PDF
    Recent information-theoretic results show the optimality of dirty-paper coding (DPC) in achieving the full capacity region of the Gaussian multiple-input multiple-output (MIMO) broadcast channel (BC). This paper presents a DPC based code design for BCs. We consider the case in which there is an individual rate/signal-to-interference-plus-noise ratio (SINR) constraint for each user. For a fixed transmitter power, we choose the linear transmit precoding matrix such that the SINRs at users are uniformly maximized, thus ensuring the best bit-error rate performance. We start with Cover's simplest two-user Gaussian BC and present a coding scheme that operates 1.44 dB from the boundary of the capacity region at the rate of one bit per real sample (b/s) for each user. We then extend the coding strategy to a two-user MIMO Gaussian BC with two transmit antennas at the base-station and develop the first limit-approaching code design using nested turbo codes for DPC. At the rate of 1 b/s for each user, our design operates 1.48 dB from the capacity region boundary. We also consider the performance of our scheme over a slow fading BC. For two transmit antennas, simulation results indicate a performance loss of only 1.4 dB, 1.64 dB and 1.99 dB from the theoretical limit in terms of the total transmission power for the two, three and four user case, respectively
    corecore