1,860 research outputs found

    Creating an Agent Based Framework to Maximize Information Utility

    Get PDF
    With increased reliance on communications to conduct military operations, information centric network management becomes vital. A Defense department study of information management for net-centric operations lists the need for tools for information triage (based on relevance, priority, and quality) to counter information overload, semi-automated mechanisms for assessment of quality and relevance of information, and advances to enhance cognition and information understanding in the context of missions [30]. Maximizing information utility to match mission objectives is a complex problem that requires a comprehensive solution in information classification, in scheduling, in resource allocation, and in QoS support. Of these research areas, the resource allocation mechanism provides a framework to build the entire solution. Through an agent based mindset, the lessons of robot control architecture are applied to the network domain. The task of managing information flows is achieved with a hybrid reactive architecture. By demonstration, the reactive agent responds to the observed state of the network through the Unified Behavior Framework (UBF). As information flows relay through the network, agents in the network nodes limit resource contention to improve average utility and create a network with smarter bandwidth utilization. While this is an important result for information maximization, the agent based framework may have broader applications for managing communication networks

    Distributed multimedia systems

    Get PDF
    A distributed multimedia system (DMS) is an integrated communication, computing, and information system that enables the processing, management, delivery, and presentation of synchronized multimedia information with quality-of-service guarantees. Multimedia information may include discrete media data, such as text, data, and images, and continuous media data, such as video and audio. Such a system enhances human communications by exploiting both visual and aural senses and provides the ultimate flexibility in work and entertainment, allowing one to collaborate with remote participants, view movies on demand, access on-line digital libraries from the desktop, and so forth. In this paper, we present a technical survey of a DMS. We give an overview of distributed multimedia systems, examine the fundamental concept of digital media, identify the applications, and survey the important enabling technologies.published_or_final_versio

    Timeliness-Accuracy Balanced Collection of Dynamic Context Data

    Full text link

    Application of service composition mechanisms to Future Networks architectures and Smart Grids

    Get PDF
    Aquesta tesi gira entorn de la hipòtesi de la metodologia i mecanismes de composició de serveis i com es poden aplicar a diferents camps d'aplicació per a orquestrar de manera eficient comunicacions i processos flexibles i sensibles al context. Més concretament, se centra en dos camps d'aplicació: la distribució eficient i sensible al context de contingut multimèdia i els serveis d'una xarxa elèctrica intel·ligent. En aquest últim camp es centra en la gestió de la infraestructura, cap a la definició d'una Software Defined Utility (SDU), que proposa una nova manera de gestionar la Smart Grid amb un enfocament basat en programari, que permeti un funcionament molt més flexible de la infraestructura de xarxa elèctrica. Per tant, revisa el context, els requisits i els reptes, així com els enfocaments de la composició de serveis per a aquests camps. Fa especial èmfasi en la combinació de la composició de serveis amb arquitectures Future Network (FN), presentant una proposta de FN orientada a serveis per crear comunicacions adaptades i sota demanda. També es presenten metodologies i mecanismes de composició de serveis per operar sobre aquesta arquitectura, i posteriorment, es proposa el seu ús (en conjunció o no amb l'arquitectura FN) en els dos camps d'estudi. Finalment, es presenta la investigació i desenvolupament realitzat en l'àmbit de les xarxes intel·ligents, proposant diverses parts de la infraestructura SDU amb exemples d'aplicació de composició de serveis per dissenyar seguretat dinàmica i flexible o l'orquestració i gestió de serveis i recursos dins la infraestructura de l'empresa elèctrica.Esta tesis gira en torno a la hipótesis de la metodología y mecanismos de composición de servicios y cómo se pueden aplicar a diferentes campos de aplicación para orquestar de manera eficiente comunicaciones y procesos flexibles y sensibles al contexto. Más concretamente, se centra en dos campos de aplicación: la distribución eficiente y sensible al contexto de contenido multimedia y los servicios de una red eléctrica inteligente. En este último campo se centra en la gestión de la infraestructura, hacia la definición de una Software Defined Utility (SDU), que propone una nueva forma de gestionar la Smart Grid con un enfoque basado en software, que permita un funcionamiento mucho más flexible de la infraestructura de red eléctrica. Por lo tanto, revisa el contexto, los requisitos y los retos, así como los enfoques de la composición de servicios para estos campos. Hace especial hincapié en la combinación de la composición de servicios con arquitecturas Future Network (FN), presentando una propuesta de FN orientada a servicios para crear comunicaciones adaptadas y bajo demanda. También se presentan metodologías y mecanismos de composición de servicios para operar sobre esta arquitectura, y posteriormente, se propone su uso (en conjunción o no con la arquitectura FN) en los dos campos de estudio. Por último, se presenta la investigación y desarrollo realizado en el ámbito de las redes inteligentes, proponiendo varias partes de la infraestructura SDU con ejemplos de aplicación de composición de servicios para diseñar seguridad dinámica y flexible o la orquestación y gestión de servicios y recursos dentro de la infraestructura de la empresa eléctrica.This thesis revolves around the hypothesis the service composition methodology and mechanisms and how they can be applied to different fields of application in order to efficiently orchestrate flexible and context-aware communications and processes. More concretely, it focuses on two fields of application that are the context-aware media distribution and smart grid services and infrastructure management, towards a definition of a Software-Defined Utility (SDU), which proposes a new way of managing the Smart Grid following a software-based approach that enable a much more flexible operation of the power infrastructure. Hence, it reviews the context, requirements and challenges of these fields, as well as the service composition approaches. It makes special emphasis on the combination of service composition with Future Network (FN) architectures, presenting a service-oriented FN proposal for creating context-aware on-demand communication services. Service composition methodology and mechanisms are also presented in order to operate over this architecture, and afterwards, proposed for their usage (in conjunction or not with the FN architecture) in the deployment of context-aware media distribution and Smart Grids. Finally, the research and development done in the field of Smart Grids is depicted, proposing several parts of the SDU infrastructure, with examples of service composition application for designing dynamic and flexible security for smart metering or the orchestration and management of services and data resources within the utility infrastructure

    Challenges for orchestration and instance selection of composite services in distributed edge clouds

    Get PDF
    Today's centralized cloud-computing infrastructures have not been designed with geo-localized, personalized, bandwidth/processing-intensive, real-time applications in mind. High network delay and low throughput can have a significant impact on the user experience. Instead, such services could be deployed in distributed service nodes at the edge of the network, closer to the user. In this paper we focus on composite services of which the components are running in different service nodes. We present a two-layer framework that provides service orchestration and instance selection. We present the orchestration mechanisms to enable the flexible re-use of components across different composite services. For the resolution layer of our framework, we present two modes of operation that combine network and service availability information for efficient per-request instance selection among a multitude of service replicas

    Programming frameworks for mobile sensing

    Get PDF
    The proliferation of smart mobile devices in people’s daily lives is making context-aware computing a reality. A plethora of sensors available in these devices can be utilized to understand users’ context better. Apps can provide more relevant data or services to the user based on improved understanding of user’s context. With the advent of cloud-assisted mobile platforms, apps can also perform collaborative computation over the sensing data collected from a group of users. However, there are still two main issues: (1) A lack of simple and effective personal sensing frameworks: existing frameworks do not provide support for real-time fusing of data from motion and visual sensors in a simple manner, and no existing framework collectively utilizes sensors from multiple personal devices and personal IoT sensors, and (2) a lack of collaborative/distributed computing frameworks for mobile users. This dissertation presents solutions for these two issues. The first issue is addressed by TagPix and Sentio, two frameworks for mobile sensing. The second issue is addressed by Moitree, a middleware for mobile distributed computing, and CASINO, a collaborative sensor-driven offloading system. TagPix is a real-time, privacy preserving photo tagging framework, which works locally on the phones and consumes little resources (e.g., battery). It generates relevant tags for landscape photos by utilizing sensors of a mobile device and it does not require any previous training or indexing. When a user aims the mobile camera to a particular landmark, the framework uses accelerometer and geomagnetic field sensor to identify in which direction the user is aiming the camera at. It then uses a landmark database and employs a smart distance estimation algorithm to identify which landmark(s) is targeted by the user. The framework then generates relevant tags for the captured photo using these information. A more versatile sensing framework can be developed using sensors from multiple devices possessed by a user. Sentio is such a framework which enables apps to seamlessly utilize the collective sensing capabilities of the user’s personal devices and of the IoT sensors located in the proximity of the user. With Sentio, an app running on any personal mobile/wearable device can access any sensor of the user in real-time using the same API, can selectively switch to the most suitable sensor of a particular type when multiple sensors of this type are available at different devices, and can build composite sensors. Sentio offers seamless connectivity to sensors even if the sensor-accessing code is offloaded to the cloud. Sentio provides these functionalities with a high-level API and a distributed middleware that handles all low-level communication and sensor management tasks. This dissertation also proposes Moitree, a middleware for the mobile cloud platforms where each mobile device is augmented by an avatar, a per-user always-on software entity that resides in the cloud. Mobile-avatar pairs participate in distributed computing as a unified computing entity. Moitree provides a common programming and execution framework for mobile distributed apps. Moitree allows the components of a distributed app to execute seamlessly over a set of mobile/avatar pairs, with the provision of offloading computation and communication to the cloud. The programming framework has two key features: user collaborations are modeled using group semantics - groups are created dynamically based on context and are hierarchical; data communication among group members is offloaded to the cloud through high-level communication channels. Finally, this dissertation presents and discusses CASINO, a collaborative sensor-driven computation offloading framework which can be used alongside Moitree. This framework includes a new scheduling algorithm which minimizes the total completion time of a collaborative computation that executes over a set of mobile/avatar pairs. Using the CASINO API, the programmers can mark their classes and functions as ”offloadable”. The framework collects profiling information (network, CPU, battery, etc.) from participating users’ mobile devices and avatars, and then schedules ”offloadable” tasks in mobiles and avatars in a way that reduces the total completion time. The scheduling problem is proven to be NP-Hard and there is no polynomial time optimization algorithm for it. The proposed algorithm can generate a schedule in polynomial time using a topological sorting and greedy technique

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    Adaptive object management for distributed systems

    Get PDF
    This thesis describes an architecture supporting the management of pluggable software components and evaluates it against the requirement for an enterprise integration platform for the manufacturing and petrochemical industries. In a distributed environment, we need mechanisms to manage objects and their interactions. At the least, we must be able to create objects in different processes on different nodes; we must be able to link them together so that they can pass messages to each other across the network; and we must deliver their messages in a timely and reliable manner. Object based environments which support these services already exist, for example ANSAware(ANSA, 1989), DEC's Objectbroker(ACA,1992), Iona's Orbix(Orbix,1994)Yet such environments provide limited support for composing applications from pluggable components. Pluggability is the ability to install and configure a component into an environment dynamically when the component is used, without specifying static dependencies between components when they are produced. Pluggability is supported to a degree by dynamic binding. Components may be programmed to import references to other components and to explore their interfaces at runtime, without using static type dependencies. Yet thus overloads the component with the responsibility to explore bindings. What is still generally missing is an efficient general-purpose binding model for managing bindings between independently produced components. In addition, existing environments provide no clear strategy for dealing with fine grained objects. The overhead of runtime binding and remote messaging will severely reduce performance where there are a lot of objects with complex patterns of interaction. We need an adaptive approach to managing configurations of pluggable components according to the needs and constraints of the environment. Management is made difficult by embedding bindings in component implementations and by relying on strong typing as the only means of verifying and validating bindings. To solve these problems we have built a set of configuration tools on top of an existing distributed support environment. Specification tools facilitate the construction of independent pluggable components. Visual composition tools facilitate the configuration of components into applications and the verification of composite behaviours. A configuration model is constructed which maintains the environmental state. Adaptive management is made possible by changing the management policy according to this state. Such policy changes affect the location of objects, their bindings, and the choice of messaging system

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period
    corecore