50 research outputs found

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Understanding the Generalization Performance of Spectral Clustering Algorithms

    Full text link
    The theoretical analysis of spectral clustering mainly focuses on consistency, while there is relatively little research on its generalization performance. In this paper, we study the excess risk bounds of the popular spectral clustering algorithms: \emph{relaxed} RatioCut and \emph{relaxed} NCut. Firstly, we show that their excess risk bounds between the empirical continuous optimal solution and the population-level continuous optimal solution have a O(1/n)\mathcal{O}(1/\sqrt{n}) convergence rate, where nn is the sample size. Secondly, we show the fundamental quantity in influencing the excess risk between the empirical discrete optimal solution and the population-level discrete optimal solution. At the empirical level, algorithms can be designed to reduce this quantity. Based on our theoretical analysis, we propose two novel algorithms that can not only penalize this quantity, but also cluster the out-of-sample data without re-eigendecomposition on the overall sample. Experiments verify the effectiveness of the proposed algorithms

    Diffusion, methods and applications

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de lectura: junio de 2014Big Data, an important problem nowadays, can be understood in terms of a very large number of patterns, a very large pattern dimension or, often, both. In this thesis, we will concentrate on the high dimensionality issue, applying manifold learning techniques for visualizing and analyzing such patterns. The core technique will be Di usion Maps (DM) and its Anisotropic Di usion (AD) version, introduced by Ronald R. Coifman and his school at Yale University, and of which we will give a complete, systematic, compact and self-contained treatment. This will be done after a brief survey of previous manifold learning methods. The algorithmic contributions of the thesis will be centered in two computational challenges of di usion methods: the potential high cost of the similarity matrix eigenanalysis that is needed to define the di usion embedding coordinates, and the di culty of computing this embedding over new patterns not available for the initial eigenanalysis. With respect to the first issue, we will show how the AD set up can be used to skip it when looking for local models. In this case, local patterns will be selected through a k-Nearest Neighbors search using a properly defined local Mahalanobis distance, that enables neighbors to be found over the latent variable space underlying the AD model while we can work directly with the observable patterns and, thus, avoiding the potentially costly similarity matrix eigenanalysis. The second proposed algorithm, that we will call Auto-adaptative Laplacian Pyramids (ALP), focuses in the out-of-sample embedding extension and consists in a modification of the classical Laplacian Pyramids (LP) method. In this new algorithm the LP iterations will be combined with an estimate of the Leave One Out CV error, something that makes possible to directly define during training a criterion to estimate the optimal stopping point of this iterative algorithm. This thesis will also present several application contributions to important problems in renewable energy and medical imaging. More precisely, we will show how DM is a good method for dimensionality reduction of meteorological weather predictions, providing tools to visualize and describe these data, as well as to cluster them in order to define local models. In turn, we will apply our AD-based localized search method first to find the location in the human body of CT scan images and then to predict wind energy ramps on both individual farms and over the whole of Spain. We will see that, in both cases, our results improve on the current state of the art methods. Finally, we will compare our ALP proposal with the well-known Nyström method as well as with LP on two large dimensional problems, the time compression of meteorological data and the analysis of meteorological variables relevant in daily radiation forecasts. In both cases we will show that ALP compares favorably with the other approaches for out-of-sample extension problemsBig Data es un problema importante hoy en día, que puede ser entendido en términos de un amplio número de patrones, una alta dimensión o, como sucede normalmente, de ambos. Esta tesis se va a centrar en problemas de alta dimensión, aplicando técnicas de aprendizaje de subvariedades para visualizar y analizar dichos patrones. La técnica central será Di usion Maps (DM) y su versión anisotrópica, Anisotropic Di usion (AD), introducida por Ronald R. Coifman y su escuela en la Universidad de Yale, la cual va a ser tratada de manera completa, sistemática, compacta y auto-contenida. Esto se llevará a cabo tras un breve repaso de métodos previos de aprendizaje de subvariedades. Las contribuciones algorítmicas de esta tesis estarán centradas en dos de los grandes retos en métodos de difusión: el potencial alto coste que tiene el análisis de autovalores de la matriz de similitud, necesaria para definir las coordenadas embebidas; y la dificultad para calcular este mismo embedding sobre nuevos datos que no eran accesibles cuando se realizó el análisis de autovalores inicial. Respecto al primer tema, se mostrará cómo la aproximación AD se puede utilizar para evitar el cálculo del embedding cuando estamos interesados en definir modelos locales. En este caso, se seleccionarán patrones cercanos por medio de una búsqueda de vecinos próximos (k-NN), usando como distancia una medida de Mahalanobis local que permita encontrar vecinos sobre las variables latentes existentes bajo el modelo de AD. Todo esto se llevará a cabo trabajando directamente sobre los patrones observables y, por tanto, evitando el costoso cálculo que supone el cálculo de autovalores de la matriz de similitud. El segundo algoritmo propuesto, que llamaremos Auto-adaptative Laplacian Pyramids (ALP), se centra en la extensión del embedding para datos fuera de la muestra, y se trata de una modificación del método denominado Laplacian Pyramids (LP). En este nuevo algoritmo, las iteraciones de LP se combinarán con una estimación del error de Leave One Out CV, permitiendo definir directamente durante el periodo de entrenamiento, un criterio para estimar el criterio de parada óptimo para este método iterativo. En esta tesis se presentarán también una serie de contribuciones de aplicación de estas técnicas a importantes problemas en energías renovables e imágenes médicas. Más concretamente, se muestra como DM es un buen método para reducir la dimensión de predicciones del tiempo meteorológico, sirviendo por tanto de herramienta de visualización y descripción, así como de clasificación de los datos con vistas a definir modelos locales sobre cada grupo descrito. Posteriormente, se aplicará nuestro método de búsqueda localizada basado en AD tanto a la búsqueda de la correspondiente posición de tomografías en el cuerpo humano, como para la detección de rampas de energía eólica en parques individuales o de manera global en España. En ambos casos se verá como los resultados obtenidos mejoran los métodos del estado del arte actual. Finalmente se comparará el algoritmo de ALP propuesto frente al conocido método de Nyström y al método de LP, en dos problemas de alta dimensión: el problema de compresión temporal de datos meteorológicos y el análisis de variables meteorológicas relevantes para la predicción de la radiación diaria. En ambos casos se mostrará cómo ALP es comparativamente mejor que otras aproximaciones existentes para resolver el problema de extensión del embedding a puntos fuera de la muestr

    HIGH PERFORMANCE SPECTRAL METHODS FOR GRAPH-BASED MACHINE LEARNING

    Get PDF
    Graphs play a critical role in machine learning and data mining fields. The success of graph-based machine learning algorithms highly depends on the quality of the underlying graphs. Desired graphs should have two characteristics: 1) they should be able to well-capture the underlying structures of the data sets. 2) they should be sparse enough so that the downstream algorithms can be performed efficiently on them. This dissertation first studies the application of a two-phase spectrum-preserving spectral sparsification method that enables to construct very sparse sparsifiers with guaranteed preservation of original graph spectra for spectral clustering. Experiments show that the computational challenge due to the eigen-decomposition procedure in spectral clustering can be fundamentally addressed. We then propose a highly-scalable spectral graph learning approach GRASPEL. GRASPEL can learn high-quality graphs from high dimensional input data. Compared with prior state-of-the-art graph learning and construction methods , GRASPEL leads to substantially improved algorithm performance

    A Comprehensive Review of Community Detection in Graphs

    Full text link
    The study of complex networks has significantly advanced our understanding of community structures which serves as a crucial feature of real-world graphs. Detecting communities in graphs is a challenging problem with applications in sociology, biology, and computer science. Despite the efforts of an interdisciplinary community of scientists, a satisfactory solution to this problem has not yet been achieved. This review article delves into the topic of community detection in graphs, which serves as a crucial role in understanding the organization and functioning of complex systems. We begin by introducing the concept of community structure, which refers to the arrangement of vertices into clusters, with strong internal connections and weaker connections between clusters. Then, we provide a thorough exposition of various community detection methods, including a new method designed by us. Additionally, we explore real-world applications of community detection in diverse networks. In conclusion, this comprehensive review provides a deep understanding of community detection in graphs. It serves as a valuable resource for researchers and practitioners in multiple disciplines, offering insights into the challenges, methodologies, and applications of community detection in complex networks

    New Approaches in Multi-View Clustering

    Get PDF
    Many real-world datasets can be naturally described by multiple views. Due to this, multi-view learning has drawn much attention from both academia and industry. Compared to single-view learning, multi-view learning has demonstrated plenty of advantages. Clustering has long been serving as a critical technique in data mining and machine learning. Recently, multi-view clustering has achieved great success in various applications. To provide a comprehensive review of the typical multi-view clustering methods and their corresponding recent developments, this chapter summarizes five kinds of popular clustering methods and their multi-view learning versions, which include k-means, spectral clustering, matrix factorization, tensor decomposition, and deep learning. These clustering methods are the most widely employed algorithms for single-view data, and lots of efforts have been devoted to extending them for multi-view clustering. Besides, many other multi-view clustering methods can be unified into the frameworks of these five methods. To promote further research and development of multi-view clustering, some popular and open datasets are summarized in two categories. Furthermore, several open issues that deserve more exploration are pointed out in the end

    Unsupervised Spectral Ranking For Anomaly Detection

    Get PDF
    Anomaly detection is the problem of finding deviations from expected normal patterns. A wide variety of applications, such as fraud detection for credit cards and insurance, medical image monitoring, network intrusion detection, and military surveillance, can be viewed as anomaly detection. For anomaly detection, obtaining accurate labels, especially labels for anomalous cases, is costly and time consuming, if not practically infeasible. This makes supervised anomaly detection less desirable in the domain of anomaly detection. In this thesis, we propose a novel unsupervised spectral ranking method for anomaly detection (SRA). Based on the 1st non-principal eigenvectors from Laplacian matrices, the proposed SRA can generate anomaly ranking either with respect to a single majority class or with respect to multiple majority classes. The ranking type is based on whether the percentage of the smaller class instances (positive or negative) is larger than the expected upper bound of the anomaly ratio. We justify the proposed spectral ranking by establishing a connection between the unsupervised support vector machine optimization and the spectral Laplacian optimization problem. Using both synthetic and real data sets, we show that our proposed SRA is a meaningful and effective alternative to the state-of-art unsupervised anomaly ranking methods. In addition, we show that, in certain scenarios, unsupervised SRA method surpasses the state-of-art unsupervised anomaly ranking methods in terms of performance and robustness of parameter tuning. Finally, we demonstrate that choosing appropriate similarity measures remains crucial in applying our proposed SRA algorithm

    Different approaches to community detection

    Full text link
    A precise definition of what constitutes a community in networks has remained elusive. Consequently, network scientists have compared community detection algorithms on benchmark networks with a particular form of community structure and classified them based on the mathematical techniques they employ. However, this comparison can be misleading because apparent similarities in their mathematical machinery can disguise different reasons for why we would want to employ community detection in the first place. Here we provide a focused review of these different motivations that underpin community detection. This problem-driven classification is useful in applied network science, where it is important to select an appropriate algorithm for the given purpose. Moreover, highlighting the different approaches to community detection also delineates the many lines of research and points out open directions and avenues for future research.Comment: 14 pages, 2 figures. Written as a chapter for forthcoming Advances in network clustering and blockmodeling, and based on an extended version of The many facets of community detection in complex networks, Appl. Netw. Sci. 2: 4 (2017) by the same author
    corecore