752 research outputs found

    Lossless Image and Intra-Frame Compression With Integer-to-Integer DST

    Get PDF
    Video coding standards are primarily designed for efficient lossy compression, but it is also desirable to support efficient lossless compression within video coding standards using small modifications to the lossy coding architecture. A simple approach is to skip transform and quantization, and simply entropy code the prediction residual. However, this approach is inefficient at compression. A more efficient and popular approach is to skip transform and quantization but also process the residual block in some modes with differential pulse code modulation ( DPCM), along the horizontal or vertical direction, prior to entropy coding. This paper explores an alternative approach based on processing the residual block with integer-to-integer (i2i) transforms. I2i transforms can map integer pixels to integer transform coefficients without increasing the dynamic range and can be used for lossless compression. We focus on lossless intra coding and develop novel i2i approximations of the odd type-3 discrete sine transform (ODST-3). Experimental results with the high efficiency video coding (HEVC) reference software show that when the developed i2i approximations of the ODST-3 are used along the DPCM method of HEVC, an average 2.7% improvement of lossless intra frame compression efficiency is achieved over HEVC version 2, which uses only the DPCM method, without a significant increase in computational complexity

    An approach to summarize video data in compressed domain

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2007Includes bibliographical references (leaves: 54-56)Text in English; Abstract: Turkish and Englishx, 59 leavesThe requirements to represent digital video and images efficiently and feasibly have collected great efforts on research, development and standardization over past 20 years. These efforts targeted a vast area of applications such as video on demand, digital TV/HDTV broadcasting, multimedia video databases, surveillance applications etc. Moreover, the applications demand more efficient collections of algorithms to enable lower bit rate levels, with acceptable quality depending on application requirements. In our time, most of the video content either stored, transmitted is in compressed form. The increase in the amount of video data that is being shared attracted interest of researchers on the interrelated problems of video summarization, indexing and abstraction. In this study, the scene cut detection in emerging ISO/ITU H264/AVC coded bit stream is realized by extracting spatio-temporal prediction information directly in the compressed domain. The syntax and semantics, parsing and decoding processes of ISO/ITU H264/AVC bit-stream is analyzed to detect scene information. Various video test data is constructed using Joint Video Team.s test model JM encoder, and implementations are made on JM decoder. The output of the study is the scene information to address video summarization, skimming, indexing applications that use the new generation ISO/ITU H264/AVC video

    VLSI Architectures for the Steerable-Discrete-Cosine-Transform (SDCT)

    Get PDF
    Since frame resolution of modern video streams is rapidly growing, the need for more complex and efficient video compression methods arises. H.265/HEVC represents the state of the art in video coding standard. Its architecture is however not completely standardized, as many parts are only described at software level to allow the designer to implement new compression techniques. This paper presents an innovative hardware architecture for the Steerable Discrete Cosine Transform (SDCT), which has been recently embedded into the HEVC standard, providing better compression ratios. Such technique exploits directional DCT using basis having different orientation angles, leading to a sparser representation which translates to an improved coding efficiency. The final design is able to work at a frequency of 188 MHZ, reaching a throughput of 3.00 GSample/s. In particular, this architecture supports 8k UltraHigh Definition (UHD) (7680 × 4320) with a frame rate of 60 Hz, which is one of the best resolutions supported by HEVC

    Lifting transforms on graphs and their application to video coding

    Get PDF
    Compact representations of data are very useful in many applications such as coding, denoising or feature extraction. “Classical” transforms such as Discrete Cosine Transforms (DCT) or Discrete Wavelets Transforms (DWT) provide sparse approximations of smooth signals, but lose efficiency when they are applied to signals with large discontinuities. In such cases, directional transforms, which are able to adapt their basis functions to the underlying signal structure, improve the performance of “classical” transforms. In this PhD Thesis we describe a general class of lifting transforms on graphs that can be seen as N-dimensional directional transforms. Graphs are constructed so that every node corresponds to a specific sample point of a discrete N-dimensional signal and links between nodes represent correlation between samples. Therefore, non-correlated samples (e.g., samples across a large discontinuity in the signal) should not be linked. We propose a lifting-based directional transform that can be applied to any undirected graph. In this transform, filtering operations are performed following highcorrelation directions (indicated by the links between nodes), thus avoiding filtering across large discontinuities that give rise to large high-pass coefficients in those locations. In this way, the transform efficiently exploits the correlation that exists between data on the graph, leading to a more compact representation. We mainly focus on the design and optimization of these lifting transforms on graphs, studying and discussing the three main steps required to obtain an invertible and critically sampled transform: (i) graph construction, (ii) design of “good” graph bipartitions, and (iii) filter design. We also explain how to extend the transform to J levels of decomposition, obtaining a multiresolution analysis of the original N-dimensional signal. The proposed transform has many desirable properties, such as perfect reconstruction, critically-sampled, easy generalization to N-dimensional domains, non-separable and one-dimensional filtering operations, localization in frequency and in the original domain, and the ability to choose any filtering direction. As an application, we develop a graph-based video encoder where the goal is to obtain a compact representation of the original video sequence. To this end, we first propose a graph-representation of the video sequence and then design a 3-dimensional (spatio-temporal) non-separable directional transform. This can be viewed as an extension of wavelet transform-based video encoders that operate in the spatial and in the temporal domains independently. Our transform yields better compaction ability (in terms of non-linear approximation) than a state of the art motion-compensated temporal filtering transform (which can be interpreted as a temporal wavelet transform) and a comparable hybrid Discrete Cosine Transform (DCT)-based video encoder (which is the basis of the latest video coding standards). In order to obtain a complete video encoder, the transform coefficients and the side information (needed to obtain an invertible scheme) should be entropy coded and sent to the decoder. Therefore, we also propose a coefficient-reordering method based on the information of the graph which allows to improve the compression ability of the entropy encoder. Furthermore, we design two different low-cost approaches which aim to reduce the extensive computational complexity of the proposed system without causing significant losses of compression performance. The proposed complete system leads to an efficient encoder which significantly outperforms a comparable hybrid DCT-based encoder in rate-distortion terms. Finally, we investigate how rate-distortion optimization can be applied to the proposed coding scheme.La representación compacta de señales resulta útil en diversas aplicaciones, tales como compresión, reducción de ruido, o extracción de características. Transformadas “clásicas” como la Transformada Discreta del Coseno (DCT) o la TransformadaWavelet Discreta (DWT) logran aproximaciones compactas de señales suaves, pero pierden su eficiencia al ser aplicadas sobre se˜nales que contienen grandes discontinuidades. En estos casos, las transformadas direccionales, capaces de adaptar sus funciones base a la estructura de la señal a analizar, mejoran la eficiencia de las transformadas “clásicas”. En esta tesis nos centramos en el diseño y optimización de transformadas “lifting” sobre grafos, las cuales pueden ser interpretadas como transformadas direccionales N-dimensionales. Los grafos son construidos demanera que cada nodo se corresponde con una muestra específica de una señal discreta N-dimensional, y los enlaces entre los nodos representan correlación entre muestras. Así, muestras no correlacionadas (por ejemplo, muestras que se encuentran a ambos lados de una discontinuidad) no deberían estar unidas. Sobre el grafo formado aplicaremos transformadas basadas en el esquema “lifting”, en las que las operaciones de filtrado se realizan siguiendo las direcciones indicadas por los enlaces entre nodos (direcciones de alta correlación). De esta manera, evitaremos filtrar cruzando a través de largas discontinuidades (lo que resultaría en coeficientes con alto valor en dichas discontinuidades), dando lugar a una transformada direccional que explota la correlación que existe entre las muestras de la señal en el grafo, obteniendo una representación compacta de dicha señal. En esta tesis nos centramos, principalmente, en investigar los tres principales pasos requeridos para obtener una transformada direccional basada en el esquema “lifting” aplicado en grafos: (i) la construcción del grafo, (ii) el diseño de biparticiones del grafo, y (iii) la definición de los filtros. El buen diseño de estos tres procesos determinará, entre otras cosas, la capacidad para compactar la energía de la transformada. También explicamos cómo extender este tipo de transformadas a J niveles de descomposición, obteniendo un análisis multi-resolución de la señal N-dimensional original. La transformada propuesta tiene muchas propiedades deseables, tales como reconstrucción perfecta, muestreo crítico, fácil generalización a dominios N-dimensionales, operaciones de filtrado no separables y unidimensionales, localización en frecuencia y en el dominio original, y capacidad de elegir cualquier dirección de filtrado. Como aplicación, desarrollamos un codificador de vídeo basado en grafos donde el objetivo es obtener una versión compacta de la señal de vídeo original. Para ello, primero proponemos una representación en grafos de la secuencia de vídeo y luego diseñamos transformadas no separables direccionales 3-dimensionales (espacio-tiempo). Nuestro codificador puede interpretarse como una extensión de los codificadores de vídeo basados en “wavelets”, los cuales operan independientemente (de forma separable) en el dominio espacial y en el temporal. La transformada propuesta consigue mejores resultados (en términos de aproximación no lineal) que un método del estado del arte basado en “wavelets” temporales compensadas en movimiento, y un codificador DCT comparable (base de los últimos estándares de codificación de vídeo). Para conseguir un codificador de vídeo completo, los coeficientes resultantes de la transformada y la información secundaria (necesaria para obtener un esquema invertible) deben ser codificados entrópicamente y enviados al decodificador. Por ello, también proponemos en esta tesis un método de reordenación de los coeficientes basado en la información del grafo que permite mejorar la capacidad de compresión del codificador entrópico. El esquema de codificación propuesto mejora significativamente la eficiencia de un codificador híbrido basado en DCT en términos de tasa-distorsión. Sin embargo, nuestro método tiene la desventaja de su gran complejidad computacional. Para tratar de paliar este problema, diseñamos dos algoritmos que tratan de reducir dicha complejidad sin que ello afecte en la capacidad de compresión. Finalmente, investigamos como realizar optimización tasa-distorsión sobre el codificador basado en grafos propuesto

    Dynamic Switching of GOP Configurations in High Efficiency Video Coding (HEVC) using Relational Databases for Multi-objective Optimization

    Get PDF
    Our current technological era is flooded with smart devices that provide significant computational resources that require optimal video communications solutions. Optimal and dynamic management of video bitrate, quality and energy needs to take into account their inter-dependencies. With emerging network generations providing higher bandwidth rates, there is also a growing need to communicate video with the best quality subject to the availability of resources such as computational power and available bandwidth. Similarly, for accommodating multiple users, there is a need to minimize bitrate requirements while sustaining video quality for reasonable encoding times. This thesis focuses on providing an efficient mechanism for deriving optimal solutions for High Efficiency Video Coding (HEVC) based on dynamic switching of GOP configurations. The approach provides a basic system for multi-objective optimization approach with constraints on power, video quality and bitrate. This is accomplished by utilizing a recently introduced framework known as Dynamically Reconfigurable Architectures for Time-varying Image Constraints (DRASTIC) in HEVC/H.265 encoder with six different GOP configurations to support optimization modes for minimum rate, maximum quality and minimum computational time (minimum energy in constant power configuration) mode of operation. Pareto-optimal GOP configurations are used in implementing the DRASTIC modes. Additionally, this thesis also presents a relational database formulation for supporting multiple devices that are characterized by different screen resolutions and computational resources. This approach is applicable to internet-based video streaming to different devices where the videos have been pre-compressed. Here, the video configuration modes are determined based on the application of database queries applied to relational databases. The database queries are used to retrieve a Pareto-optimal configuration based on real-time user requirements, device, and network constraints

    High-Level Synthesis Implementation of HEVC Intra Encoder

    Get PDF
    High Efficiency Video Coding (HEVC) is the latest video coding standard that aims to alleviate the increasing transmission and storage needs of modern video applications. Compared with its predecessor, HEVC is able to halve the bit rate required for high quality video, but at the cost of increased complexity. High complexity makes HEVC video encoding slow and resource intensive but also ideal for hardware acceleration. With increasingly more complex designs, the effort required for traditional hardware development at register-transfer level (RTL) grows substantially. High-Level Synthesis (HLS) aims to solve this by raising the abstraction level through automatic tools that generate RTL-level code from general programming languages like C or C++. In this Thesis, we made use of Catapult-C HLS tool to create an intra coding accelerator for an HEVC encoder on a Field Programmable Gate Array (FPGA). We used the C source code of Kvazaar open-source HEVC encoder as a reference model for accelerator implementation. Over 90 % of the implementation including all major intra coding tools were implemented with HLS, with the rest being ready made IP blocks and hand-written RTL components. The accelerator was synthesized into an Arria 10 FPGA chip that was able to accommodate three accelerators and associated interface components. With two FPGAs connected to a high-end PC, our encoder was able to encode 2160p Ultra-High definition (UHD) video at 123 fps. Total FPGA resource usage was around 80 % with 346k Adaptive logic modules (ALMs) and 1227 Digital signal processors (DSPs)

    Video coding algorithm and optimization techniques

    Get PDF

    Motion compensation with minimal residue dispersion matching criteria

    Get PDF
    Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnoloigia, 2016.Com a crescente demanda por serviços de vídeo, técnicas de compressão de vídeo tornaram-se uma tecnologia de importância central para os sistemas de comunicação modernos. Padrões para codificação de vídeo foram criados pela indústria, permitindo a integração entre esses serviços e os mais diversos dispositivos para acessá-los. A quase totalidade desses padrões adota um modelo de codificação híbrida, que combina métodos de codificação diferencial e de codificação por transformadas, utilizando a compensação de movimento por blocos (CMB) como técnica central na etapa de predição. O método CMB tornou-se a mais importante técnica para explorar a forte redundância temporal típica da maioria das sequências de vídeo. De fato, muito do aprimoramento em termos de e ciência na codificação de vídeo observado nas últimas duas décadas pode ser atribuído a refinamentos incrementais na técnica de CMB. Neste trabalho, apresentamos um novo refinamento a essa técnica. Uma questão central à abordagem de CMB é a estimação de movimento (EM), ou seja, a seleção de vetores de movimento (VM) apropriados. Padrões de codificação tendem a regular estritamente a sintaxe de codificação e os processos de decodificação para VM's e informação de resíduo, mas o algoritmo de EM em si é deixado a critério dos projetistas do codec. No entanto, embora praticamente qualquer critério de seleção permita uma decodi cação correta, uma seleção de VM criteriosa é vital para a e ciência global do codec, garantindo ao codi cador uma vantagem competitiva no mercado. A maioria do algoritmos de EM baseia-se na minimização de uma função de custo para os blocos candidatos a predição para um dado bloco alvo, geralmente a soma das diferenças absolutas (SDA) ou a soma das diferenças quadradas (SDQ). A minimização de qualquer uma dessas funções de custo selecionará a predição que resulta no menor resíduo, cada uma em um sentido diferente porém bem de nido. Neste trabalho, mostramos que a predição de mínima dispersão de resíduo é frequentemente mais e ciente que a tradicional predição com resíduo de mínimo tamanho. Como prova de conceito, propomos o algoritmo de duplo critério de correspondência (ADCC), um algoritmo simples em dois estágios para explorar ambos esses critérios de seleção em turnos. Estágios de minimização de dispersão e de minimização de tamanho são executadas independentemente. O codificador então compara o desempenho dessas predições em termos da relação taxa-distorção e efetivamente codifica somente a mais eficiente. Para o estágio de minimização de dispersão do ADCC, propomos ainda o desvio absoluto total com relação à média (DATM) como a medida de dispersão a ser minimizada no processo de EM. A tradicional SDA é utilizada como a função de custo para EM no estágio de minimização de tamanho. O ADCC com SDA/DATM foi implementado em uma versão modificada do software de referência JM para o amplamente difundido padrão H.264/AVC de codificação. Absoluta compatibilidade a esse padrão foi mantida, de forma que nenhuma modificação foi necessária no lado do decodificador. Os resultados mostram aprimoramentos significativos com relação ao codificador H.264/AVC não modificado.With the ever growing demand for video services, video compression techniques have become a technology of central importance for communication systems. Industry standards for video coding have emerged, allowing the integration between these services and the most diverse devices. The almost entirety of these standards adopt a hybrid coding model combining di erential and transform coding methods, with block-based motion compensation (BMC) at the core of its prediction step. The BMC method have become the single most important technique to exploit the strong temporal redundancy typical of most video sequences. In fact, much of the improvements in video coding e ciency over the past two decades can be attributed to incremental re nements to the BMC technique. In this work, we propose another such re nement. A key issue to the BMC framework is motion estimation (ME), i.e., the selection of appropriate motion vectors (MV). Coding standards tend to strictly regulate the coding syntax and decoding processes for MV's and residual information, but the ME algorithm itself is left at the discretion of the codec designers. However, though virtually any MV selection criterion will allow for correct decoding, judicious MV selection is critical to the overall codec performance, providing the encoder with a competitive edge in the market. Most ME algorithms rely on the minimization of a cost function for the candidate prediction blocks given a target block, usually the sum of absolute di erences (SAD) or the sum of squared di erences (SSD). The minimization of any of these cost functions will select the prediction that results in the smallest residual, each in a di erent but well de ned sense. In this work, we show that the prediction of minimal residue dispersion is frequently more e cient than the usual prediction of minimal residue size. As proof of concept, we propose the double matching criterion algorithm (DMCA), a simple two-pass algorithm to exploit both of these MV selection criteria in turns. Dispersion minimizing and size minimizing predictions are carried out independently. The encoder then compares these predictions in terms of rate-distortion performance and outputs only the most e cient one. For the dispersion minimizing pass of the DMCA, we also propose the total absolute deviation from the mean (TADM) as the measure of residue dispersion to be minimized in ME. The usual SAD is used as the ME cost function in the size minimizing pass. The DMCA with SAD/TADM was implemented in a modi ed version of the JM reference software encoder for the widely popular H.264/AVC coding standard. Absolute compliance to the standard was maintained, so that no modi cations on the decoder side were necessary. Results show signi cant improvements over the unmodi ed H.264/AVC encoder
    corecore