622 research outputs found

    Genome variations: Effects on the robustness of neuroevolved control for swarm robotics systems

    Get PDF
    Manual design of self-organized behavioral control for swarms of robots is a complex task. Neuroevolution has proved a viable alternative given its capacity to automatically synthesize controllers. In this paper, we introduce the concept of Genome Variations (GV) in the neuroevolution of behavioral control for robotic swarms. In an evolutionary setup with GV, a slight mutation is applied to the evolving neural network parameters before they are copied to the robots in a swarm. The genome variation is individual to each robot, thereby generating a slightly heterogeneous swarm. GV represents a novel approach to the evolution of robust behaviors, expected to generate more stable and robust individual controllers, and bene t swarm behaviors that can deal with small heterogeneities in the behavior of other members in the swarm. We conduct experiments using an aggregation task, and compare the evolved solutions to solutions evolved under ideal, noise-free conditions, and to solutions evolved with traditional sensor noise.info:eu-repo/semantics/acceptedVersio

    On Agent Communication in Large Groups

    Get PDF
    The problem is fundamental and natural, yet deep - to simulate the simplest possible form of communication that can occur within a large multi-agent system. It would be prohibitive to try and survey all of the research on communication in general so we must restrict our focus. We will devote our efforts to synthetic communication occurring within large groups. In particular, we would like to discover a model for communication that will serve as an abstract model, a prototype, for simulating communication within large groups of biological organisms

    Dynamic argumentation in UbiGDSS

    Get PDF
    "First Online: 17 August 2017"Supporting and representing the group decision-making process is a complex task that requires very specific aspects. The current existing argumentation models cannot make good use of all the advantages inherent to group decision-making. There is no monitoring of the process or the possibility to provide dynamism to it. These issues can compromise the success of Group Decision Support Systems if those systems are not able to provide freedom and all necessary mechanisms to the decision-maker. We investigate the use of argumentation in a completely new perspective that will allow for a mutual understanding between agents and decision-makers. Besides this, our proposal allows to define an agent not only according to the preferences of the decisionmaker but also according to his interests towards the decision-making process. We show that our definition respects the requirements that are essential for groups to interact without limitations and that can take advantage of those interactions to create valuable knowledge to support more and better.This work has been supported by COMPETE Programme (operational programme for competitiveness) within project POCI-01-0145-FEDER-007043, by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within the Projects UID/CEC/00319/2013, UID/EEA/00760/2013, and the João Carneiro PhD grant with the reference SFRH/BD/89697/2012.info:eu-repo/semantics/publishedVersio

    Learning Strategies for Evolved Co-operating Multi-Agent Teams in Pursuit Domain

    Get PDF
    This study investigates how genetic programming (GP) can be effectively used in a multi-agent system to allow agents to learn to communicate. Using the predator-prey scenario and a co-operative learning strategy, communication protocols are compared as multiple predator agents learn the meaning of commands in order to achieve their common goal of first finding, and then tracking prey. This work is divided into three parts. The first part uses a simple GP language in the Pursuit Domain Development Kit (PDP) to investigate several communication protocols, and compares the predators' ability to find and track prey when the prey moves both linearly and randomly. The second part, again in the PDP environment, enhances the GP language and fitness measure in search of a better solution for when the prey moves randomly. The third part uses the Ms. Pac-Man Development Toolkit to test how the enhanced GP language performs in a game environment. The outcome of each part of this study reveals emergent behaviours in different forms of message sending patterns. The results from Part 1 reveal a general synchronization behaviour emerging from simple message passing among agents. Additionally, the results show a learned behaviour in the best result which resembles the behaviour of guards and reinforcements found in popular stealth video games. The outcomes from Part 2 reveal an emergent message sending pattern such that one agent is designated as the "sending" agent and the remaining agents are designated as "receiving" agents. Evolved agents in the Ms. Pac-Man simulator show an emergent sending pattern in which there is one agent that sends messages when it is in view of the prey. In addition, it is shown that evolved agents in both Part 2 and Part 3 are able to learn a language. For example, "sending" agents are able to make decisions about when and what type of command to send and "receiving" agents are able to associate the intended meaning to commands

    Synthesis of formation control for an aquatic swarm robotics system

    Get PDF
    Formations are the spatial organization of objects or entities according to some predefined pattern. They can be found in nature, in social animals such as fish schools, and insect colonies, where the spontaneous organization into emergent structures takes place. Formations have a multitude of applications such as in military and law enforcement scenarios, where they are used to increase operational performance. The concept is even present in collective sports modalities such as football, which use formations as a strategy to increase teams efficiency. Swarm robotics is an approach for the study of multi-robot systems composed of a large number of simple units, inspired in self-organization in animal societies. These have the potential to conduct tasks too demanding for a single robot operating alone. When applied to the coordination of such type of systems, formations allow for a coordinated motion and enable SRS to increase their sensing efficiency as a whole. In this dissertation, we present a virtual structure formation control synthesis for a multi-robot system. Control is synthesized through the use of evolutionary robotics, from where the desired collective behavior emerges, while displaying key-features such as fault tolerance and robustness. Initial experiments on formation control synthesis were conducted in simulation environment. We later developed an inexpensive aquatic robotic platform in order to conduct experiments in real world conditions. Our results demonstrated that it is possible to synthesize formation control for a multi-robot system making use of evolutionary robotics. The developed robotic platform was used in several scientific studies.As formações consistem na organização de objetos ou entidades de acordo com um padrão pré-definido. Elas podem ser encontradas na natureza, em animais sociais tais como peixes ou colónias de insetos, onde a organização espontânea em estruturas se verifica. As formações aplicam-se em diversos contextos, tais como cenários militares ou de aplicação da lei, onde são utilizadas para aumentar a performance operacional. O conceito está também presente em desportos coletivos tais como o futebol, onde as formações são utilizadas como estratégia para aumentar a eficiência das equipas. Os enxames de robots são uma abordagem para o estudo de sistemas multi-robô compostos de um grande número de unidades simples, inspirado na organização de sociedades animais. Estes têm um elevado potencial na resolução de tarefas demasiado complexas para um único robot. Quando aplicadas na coordenação deste tipo de sistemas, as formações permitem o movimento coordenado e o aumento da sensibilidade do enxame como um todo. Nesta dissertação apresentamos a síntese de controlo de formação para um sistema multi-robô. O controlo é sintetizado através do uso de robótica evolucionária, de onde o comportamento coletivo emerge, demonstrando ainda funcionalidadeschave tais como tolerância a falhas e robustez. As experiências iniciais na síntese de controlo foram realizadas em simulação. Mais tarde foi desenvolvida uma plataforma robótica para a condução de experiências no mundo real. Os nossos resultados demonstram que é possível sintetizar controlo de formação para um sistema multi-robô, utilizando técnicas de robótica evolucionária. A plataforma desenvolvida foi ainda utilizada em diversos estudos científicos

    A Social Approach for Target Localization: Simulation and Implementation in the marXbot Robot

    Get PDF
    Foraging is a common benchmark problem in collective robotics in which a robot (the forager) explores a given environment while collecting items for further deposition at specific locations. A typical real-world application of foraging is garbage collection where robots collect garbage for further disposal in pre-defined locations. This work proposes a method to cooperatively perform the task of finding such locations: instead of using local or global localization strategies relying on pre-installed infrastructure, the proposed approach takes advantage of the knowledge gathered by a population about the localization of the targets. In our approach, robots communicate in an intrinsic way the estimation about how near they are from a target; these estimations are used by neighbour robots for estimating their proximity, and for guiding the navigation of the whole population when looking for these specific areas. We performed several tests in a simulator, and we validated our approach on a population of real robots. For the validation tests we used a mobile robot called marXbot. In both cases (i.e., simulation and implementation on real robots), we found that the proposed approach efficiently guides the robots towards the pre-specified targets while allowing the modulation of their speed
    corecore