760 research outputs found

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    PND-Net: Physics based Non-local Dual-domain Network for Metal Artifact Reduction

    Full text link
    Metal artifacts caused by the presence of metallic implants tremendously degrade the reconstructed computed tomography (CT) image quality, affecting clinical diagnosis or reducing the accuracy of organ delineation and dose calculation in radiotherapy. Recently, deep learning methods in sinogram and image domains have been rapidly applied on metal artifact reduction (MAR) task. The supervised dual-domain methods perform well on synthesized data, while unsupervised methods with unpaired data are more generalized on clinical data. However, most existing methods intend to restore the corrupted sinogram within metal trace, which essentially remove beam hardening artifacts but ignore other components of metal artifacts, such as scatter, non-linear partial volume effect and noise. In this paper, we mathematically derive a physical property of metal artifacts which is verified via Monte Carlo (MC) simulation and propose a novel physics based non-local dual-domain network (PND-Net) for MAR in CT imaging. Specifically, we design a novel non-local sinogram decomposition network (NSD-Net) to acquire the weighted artifact component, and an image restoration network (IR-Net) is proposed to reduce the residual and secondary artifacts in the image domain. To facilitate the generalization and robustness of our method on clinical CT images, we employ a trainable fusion network (F-Net) in the artifact synthesis path to achieve unpaired learning. Furthermore, we design an internal consistency loss to ensure the integrity of anatomical structures in the image domain, and introduce the linear interpolation sinogram as prior knowledge to guide sinogram decomposition. Extensive experiments on simulation and clinical data demonstrate that our method outperforms the state-of-the-art MAR methods.Comment: 19 pages, 8 figure

    Advanced Characterization and On-Line Process Monitoring of Additively Manufactured Materials and Components

    Get PDF
    This reprint is concerned with the microstructural characterization and the defect analysis of metallic additively manufactured (AM) materials and parts. Special attention is paid to the determination of residual stress in such parts and to online monitoring techniques devised to predict the appearance of defects. Finally, several non-destructive testing techniques are employed to assess the quality of AM materials and parts

    CFD Modelling and Simulation of Water Turbines

    Get PDF
    The design and development of water turbines requires accurate methods for performance prediction. Numerical methods and modelling are becoming increasingly important tools to achieve better designs and more efficient turbines, reducing the time required in physical model testing. This book is focused on applying numerical simulations and models for water turbines to predict tool their performance. In this Special Issue, the different contributions of this book are classified into three state-of-the-art Topics: discussing the modelling of pump-turbines, the simulation of horizontal and vertical axis turbines for hydrokinetic applications and the modelling of hydropower plants. All the contributions to this book demonstrate the importance of the modelling and simulation of water turbines for hydropower energy. This new generation of models and simulations will play a major role in the global energy transition and energy crisis, and, of course, in the mitigation of climate change

    X-ray Phase Contrast Tomography : Setup and Scintillator Development

    Get PDF
    X-ray microscopy and micro-tomography (ÎŒCT) are valuable non-destructive examination methods in many disciplines such as bio-medical research, archaeometry, material science and paleontology. Besides being implemented at synchrotrons radiation sources, laboratory setups using an X-ray tube and high-resolution scintillation detector routinely provide information on the micrometre scale. To improve the image contrast for small and low-density samples, it is possible to introduce a propagation distance between sample and detector to perform propagation-based phase contrast imaging (PB-PCI). This contrast mode relies on a sufficiently coherent illumination and is characterised by the appearance of an additional intensity modulations (‘edge enhancement fringes’) around interfaces in the image. The strength of this effect depends on hardware as well as geometry parameters. This thesis describes the development of a laboratory setup for X-ray ÎŒCT with a PB-PCI option. It contains the theoretical and technical background of the setup design as well the characterization of the achieved performance.Moreover, the optimization of the PB-PCI geometry was explored both theoretically as well as experimentally for three different setups. A simple rule for finding the optimal magnification to achieve high phase contrast for edge features was deduced. The effect of the polychromatic source spectrum und detector sensitivity was identified and included into the theoretical model.Besides application and methodological studies, the setup was used to test and characterise new X-ray scintillator materials. Recently, metal halide perovskite nanocrystals (MHP NCs) have gained attention due to their outstanding opto-electronic performance. The main challenge for their use and commercialization is their low long-term stability against humidity, temperature, and light exposure. Here, a CsPbBr3 scintillator comprised of an ordered array of nanowires (NW) in an anodized aluminium oxide (AAO) membrane is presented as a promising new scintillator for X-ray microscopy and ÎŒCT. It shows a high light yield under X-ray exposure which improves with smaller NW diameter and higher NW length. In contrast to many other MHP materials this scintillator shows good stability under continuous X-ray exposure and changing environmental conditions over extended time spans of several weeks. This makes it suitable for tomography, which is demonstrated by acquiring the first high-resolution tomogram using a MHP scintillator with the presented laboratory setup

    Development of Magnetised Plasma Rockets using Inverse Design and Kinetic Simulation

    Get PDF
    Electric propulsion systems have become a leading solution for accelerating spacecraft, driving an appetite for lifetime, mass, and efficiency improvements. Advancements in additive manufacturing and computing power were leveraged to rapidly design the magnetic fields directly impacting an electric thruster’s performance. Fully kinetic particle-in-cell (PIC) simulation methods were also harnessed to characterise plasma sources beyond experimentation. To validate the plasma rocket models, simulations were first performed on existing and well characterised Cathodic Arc devices. The Cathodic Arc PIC models are the first to include continuously generated cathode spots and to model the far-field plasma jet. Results successfully predicted the evolution of the ion charge state energy distributions shown in experimental data and explored novel physics. To address the inverse design problem presented by the magnetic circuits of electric thrusters, the novel use of Monte Carlo sampling and conditional filtering was applied to design the magnetic nozzle of an RF plasma rocket. Following an analysis of designs with PIC simulation, devices were constructed with a helicon source, allowing plasma jet density and ion energy to be determined experimentally, with results further validating the model. A novel evolution-based design and optimisation strategy was developed to overcome the limitations of the sampling method. The objective function integrated a numerical model for plasma behaviour within a magnetic field to assess candidates across a large design space. Designs with different scores were constructed using an array of Neodymium magnets confined within an additively manufactured vessel situated about a helicon source. Experimentation showed a correlation between thrust and objective score, and an agreement with simulation data. The techniques developed in the research process can now be applied to improve the design of electric thrusters and other electromagnetic devices
    • 

    corecore