53 research outputs found

    Exploring enclosed environments with floating sensors:mapping using ultrasound

    Get PDF

    Exploring enclosed environments with floating sensors:mapping using ultrasound

    Get PDF

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Mobile Robot Localization Based on Kalman Filter

    Get PDF
    Robot localization is one of the most important subjects in the Robotics science. It is an interesting and complicated topic. There are many algorithms to solve the problem of localization. Each localization system has its own set of features, and based on them, a solution will be chosen. In my thesis, I want to present a solution to find the best estimate for a robot position in certain space for which a map is available. The thesis started with an elementary introduction to the probability and the Gaussian theories. Simple and advanced practical examples are presented to illustrate each concept related to localization. Extended Kalman Filter is chosen to be the main algorithm to find the best estimate of the robot position. It was presented through two chapters with many examples. All these examples were simulated in Matlab in this thesis in order to give the readers and future students a clear and complete introduction to Kalman Filter. Fortunately, I applied this algorithm on a robot that I have built its base from scratch. MCECS-Bot was a project started in Winter 2012 and it was assigned to me from my adviser, Dr. Marek Perkowski. This robot consists of the base with four Mecanum wheels, the waist based on four linear actuators, an arm, neck and head. The base is equipped with many sensors, which are bumper switches, encoders, sonars, LRF and Kinect. Additional devices can provide extra information as backup sensors, which are a tablet and a camera. The ultimate goal of this thesis is to have the MCECS-Bot as an open source system accessed by many future classes, capstone projects and graduate thesis students for education purposes. A well-known MRPT software system was used to present the results of the Extended Kalman Filter (EKF). These results are simply the robot positions estimated by EKF. They are demonstrated on the base floor of the FAB building of PSU. In parallel, simulated results to all different solutions derived in this thesis are presented using Matlab. A future students will have a ready platform and a good start to continue developing this system

    Advanced Knowledge Application in Practice

    Get PDF
    The integration and interdependency of the world economy leads towards the creation of a global market that offers more opportunities, but is also more complex and competitive than ever before. Therefore widespread research activity is necessary if one is to remain successful on the market. This book is the result of research and development activities from a number of researchers worldwide, covering concrete fields of research

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered

    NASA thesaurus. Volume 1: Hierarchical Listing

    Get PDF
    There are over 17,000 postable terms and nearly 4,000 nonpostable terms approved for use in the NASA scientific and technical information system in the Hierarchical Listing of the NASA Thesaurus. The generic structure is presented for many terms. The broader term and narrower term relationships are shown in an indented fashion that illustrates the generic structure better than the more widely used BT and NT listings. Related terms are generously applied, thus enhancing the usefulness of the Hierarchical Listing. Greater access to the Hierarchical Listing may be achieved with the collateral use of Volume 2 - Access Vocabulary and Volume 3 - Definitions
    corecore