2,529 research outputs found

    A Normalization Model for Analyzing Multi-Tier Millimeter Wave Cellular Networks

    Full text link
    Based on the distinguishing features of multi-tier millimeter wave (mmWave) networks such as different transmit powers, different directivity gains from directional beamforming alignment and path loss laws for line-of-sight (LOS) and non-line-of-sight (NLOS) links, we introduce a normalization model to simplify the analysis of multi-tier mmWave cellular networks. The highlight of the model is that we convert a multi-tier mmWave cellular network into a single-tier mmWave network, where all the base stations (BSs) have the same normalized transmit power 1 and the densities of BSs scaled by LOS or NLOS scaling factors respectively follow piecewise constant function which has multiple demarcation points. On this basis, expressions for computing the coverage probability are obtained in general case with beamforming alignment errors and the special case with perfect beamforming alignment in the communication. According to corresponding numerical exploration, we conclude that the normalization model for multi-tier mmWave cellular networks fully meets requirements of network performance analysis, and it is simpler and clearer than the untransformed model. Besides, an unexpected but sensible finding is that there is an optimal beam width that maximizes coverage probability in the case with beamforming alignment errors.Comment: 7 pages, 4 figure

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Device-to-Device Communications in the Millimeter Wave Band: A Novel Distributed Mechanism

    Full text link
    In spite of its potential advantages, the large-scale implementation of the device-to-device (D2D) communications has yet to be realized, mainly due to severe interference and lack of enough bandwidth in the microwave (μ\muW) band. Recently, exploiting the millimeter wave (mmW) band for D2D communications has attracted considerable attention as a potential solution to these challenges. However, its severe sensitivity to blockage along with its directional nature make the utilization of the mmW band a challenging task as it requires line-of-sight (LOS) link detection and careful beam alignment between the D2D transceivers. In this paper, we propose a novel distributed mechanism which enables the D2D devices to discover unblocked LOS links for the mmW band communication. Moreover, as such LOS links are not always available, the proposed mechanism allows the D2D devices to switch to the μ\muW band if necessary. In addition, the proposed mechanism detects the direction of the LOS links to perform the beam alignment. We have used tools from stochastic geometry to evaluate the performance of the proposed mechanism in terms of the signal-to-interference-plus-noise ratio (SINR) coverage probability. The performance of the proposed algorithm is then compared to the one of the single band (i.e., μ\muW/mmW) communication. The simulation results show that the proposed mechanism considerably outperforms the single band communication.Comment: 6 Pages, 6 Figures, Accepted for presentation in Wireless Telecommunication Symposium (WTS'18

    Throughput Optimal Beam Alignment in Millimeter Wave Networks

    Full text link
    Millimeter wave communications rely on narrow-beam transmissions to cope with the strong signal attenuation at these frequencies, thus demanding precise beam alignment between transmitter and receiver. The communication overhead incurred to achieve beam alignment may become a severe impairment in mobile networks. This paper addresses the problem of optimizing beam alignment acquisition, with the goal of maximizing throughput. Specifically, the algorithm jointly determines the portion of time devoted to beam alignment acquisition, as well as, within this portion of time, the optimal beam search parameters, using the framework of Markov decision processes. It is proved that a bisection search algorithm is optimal, and that it outperforms exhaustive and iterative search algorithms proposed in the literature. The duration of the beam alignment phase is optimized so as to maximize the overall throughput. The numerical results show that the throughput, optimized with respect to the duration of the beam alignment phase, achievable under the exhaustive algorithm is 88.3% lower than that achievable under the bisection algorithm. Similarly, the throughput achievable by the iterative search algorithm for a division factor of 4 and 8 is, respectively, 12.8% and 36.4% lower than that achievable by the bisection algorithm

    Common Codebook Millimeter Wave Beam Design: Designing Beams for Both Sounding and Communication with Uniform Planar Arrays

    Full text link
    Fifth generation (5G) wireless networks are expected to utilize wide bandwidths available at millimeter wave (mmWave) frequencies for enhancing system throughput. However, the unfavorable channel conditions of mmWave links, e.g., higher path loss and attenuation due to atmospheric gases or water vapor, hinder reliable communications. To compensate for these severe losses, it is essential to have a multitude of antennas to generate sharp and strong beams for directional transmission. In this paper, we consider mmWave systems using uniform planar array (UPA) antennas, which effectively place more antennas on a two-dimensional grid. A hybrid beamforming setup is also considered to generate beams by combining a multitude of antennas using only a few radio frequency chains. We focus on designing a set of transmit beamformers generating beams adapted to the directional characteristics of mmWave links assuming a UPA and hybrid beamforming. We first define ideal beam patterns for UPA structures. Each beamformer is constructed to minimize the mean squared error from the corresponding ideal beam pattern. Simulation results verify that the proposed codebooks enhance beamforming reliability and data rate in mmWave systems.Comment: 14 pages, 10 figure
    corecore