1,000 research outputs found

    Performance Analysis of Best Relaying Protocol Selection with Interferences at Relays

    Get PDF
    In this paper, we investigate the performance of selecting the best protocol between amplify and forward (AF) and decode and forward (DF) in multiple relay networks with multiple interferences at relays. In the selection scheme, the best protocol between AF and DF is selected depending on the comparisons of signal-to-interference and noise ratio (SINR) for all source-relay links. All relays measure the received SINR to decide forwarding signal or not. When SINR is above a certain threshold then DF is used otherwise AF is used. Particularly, we develop an accurate mathematical model for best relaying protocol by considering the effect of interferences to our scheme. Firstly, we derive the asymptotic closed form expression for the symbol error rate (SER) for the system under study. Also we derive an upper and lower bound of symbol error rate and show how they were tight with exact SER. Furthermore an approximate expression for the outage probability is derived. Numerical results are finally presented to validate the theoretical analysis with a different number of relays

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    Outage Analysis for SWIPT-Enabled Two-Way Cognitive Cooperative Communications

    Full text link
    In this paper, we study a cooperative cognitive radio network (CCRN) where the secondary user-transmitter (SU-Tx) assists bi-directional communication between a pair of primary users (PUs) following the principle of two-way relaying. In return, it gets access to the spectrum of the PUs to enable its own transmission to SU-receiver (SU-Rx). Further, in order to support sustainable operation of the network, SU-Tx is assumed to harvest energy from the RF signals received from the PUs, using the technique of simultaneous wireless information and power transfer (SWIPT). Assuming a decode-and-forward behaviour and power-splitting based relaying protocol at SU-Tx, closed form expressions for outage probability of PU and SU are obtained. Simulation results validate our analytical results and illustrate spectrum-efficiency and energy-efficiency advantages of the proposed system over one-way relaying.Comment: 15 pages, 5 figures, Submitted to IEEE Transactions on Vehicular Technolog

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Multi-Source Cooperative Communication with Opportunistic Interference Cancelling Relays

    Full text link
    In this paper we present a multi-user cooperative protocol for wireless networks. Two sources transmit simultaneously their information blocks and relays employ opportunistically successive interference cancellation (SIC) in an effort to decode them. An adaptive decode/amplify-and-forward scheme is applied at the relays to the decoded blocks or their sufficient statistic if decoding fails. The main feature of the protocol is that SIC is exploited in a network since more opportunities arise for each block to be decoded as the number of used relays NRU is increased. This feature leads to benefits in terms of diversity and multiplexing gains that are proven with the help of an analytical outage model and a diversity-multiplexing tradeoff (DMT) analysis. The performance improvements are achieved without any network synchronization and coordination. In the final part of this work the closed-form outage probability model is used by a novel approach for offline pre-selection of the NRU relays, that have the best SIC performance, from a larger number of NR nodes. The analytical results are corroborated with extensive simulations, while the protocol is compared with orthogonal and multi-user protocols reported in the literature.Comment: in IEEE Transactions on Communications, 201

    Research Issues, Challenges, and Opportunities of Wireless Power Transfer-Aided Full-Duplex Relay Systems

    Get PDF
    We present a comprehensive review for wireless power transfer (WPT)-aided full-duplex (FD) relay systems. Two critical challenges in implementing WPT-aided FD relay systems are presented, that is, pseudo FD realization and high power consumption. Existing time-splitting or power-splitting structure based-WPT-aided FD relay systems can only realize FD operation in one of the time slots or only forward part of the received signal to the destination, belonging to pseudo FD realization. Besides, self-interference is treated as noise and self-interference cancellation (SIC) operation incurs high power consumption at the FD relay node. To this end, a promising solution is outlined to address the two challenges, which realizes consecutive FD realization at all times and forwards all the desired signal to the destination for decoding. Also, active SIC, that is, analog/digital cancellation, is not required by the proposed solution, which effectively reduces the circuit complexity and releases high power consumption at the FD relay node. Specific classifications and performance metrics of WPT-aided FD relay systems are summarized. Some future research is also envisaged for WPT-aided FD systems
    corecore