442 research outputs found

    Alternating projections gridless covariance-based estimation for DOA

    Full text link
    We present a gridless sparse iterative covariance-based estimation method based on alternating projections for direction-of-arrival (DOA) estimation. The gridless DOA estimation is formulated in the reconstruction of Toeplitz-structured low rank matrix, and is solved efficiently with alternating projections. The method improves resolution by achieving sparsity, deals with single-snapshot data and coherent arrivals, and, with co-prime arrays, estimates more DOAs than the number of sensors. We evaluate the proposed method using simulation results focusing on co-prime arrays.Comment: 5 pages, accepted by (ICASSP 2021) 2021 IEEE International Conference on Acoustics, Speech, and Signal Processin

    An Improved Multiple-Toeplitz Matrices Reconstruction Algorithm for DOA Estimation of Coherent Signals

    Get PDF
    The Toeplitz matrix reconstruction algorithms exploit the row vector of an array output covariance matrix to reconstruct Toeplitz matrix, which provide the direction-of-arrival (DOA) estimation of coherent signals. However, the Toeplitz matrix reconstruction method based on any row vector of the array output covariance matrix suffers from signal correlation, it results in poor robustness. The methods based on multi-row vectors suffer serious performance degradation when in the low signal-to-noise ratio (SNR) owing to the noise energy is the square of the input noise energy. To solve the above problems, we propose an improved method that exploits all rows of the time-space correlation matrix to reconstruct the Toeplitz matrix, namely TS-MTOEP. This method firstly uses the coherence of the narrowband signal and the uncorrelated noise at different snapshots to construct the time-space correlation matrix, it effectively eliminates the influence of noise. Then, the Toeplitz matrix is reconstructed via all rows of the time-space correlation matrix, which effectively improves the energy of the signal, and further results in the improvement of the SNR. Finally, the DOAs can be obtained by combining it with the subspace-based methods. The theoretical analysis and simulation results indicate that compared with the existing Toeplitz and spatial smoothing methods, the proposed method in this paper provides good performance on estimation and resolution in cases with low input signal-to-noise due to time-space correlation matrix processing. Furthermore, in cases where the DOAs between the coherent sources are closely spaced and the snapshot number is low, our proposed method significantly improves the performance of the DOA estimation. We also provide the code to realize the reproducibility of the proposed method

    Gridless Two-dimensional DOA Estimation With L-shaped Array Based on the Cross-covariance Matrix

    Full text link
    The atomic norm minimization (ANM) has been successfully incorporated into the two-dimensional (2-D) direction-of-arrival (DOA) estimation problem for super-resolution. However, its computational workload might be unaffordable when the number of snapshots is large. In this paper, we propose two gridless methods for 2-D DOA estimation with L-shaped array based on the atomic norm to improve the computational efficiency. Firstly, by exploiting the cross-covariance matrix an ANM-based model has been proposed. We then prove that this model can be efficiently solved as a semi-definite programming (SDP). Secondly, a modified model has been presented to improve the estimation accuracy. It is shown that our proposed methods can be applied to both uniform and sparse L-shaped arrays and do not require any knowledge of the number of sources. Furthermore, since our methods greatly reduce the model size as compared to the conventional ANM method, and thus are much more efficient. Simulations results are provided to demonstrate the advantage of our methods

    A Compact Formulation for the 2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the 2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the 2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method

    Off-the-Grid Line Spectrum Denoising and Estimation with Multiple Measurement Vectors

    Full text link
    Compressed Sensing suggests that the required number of samples for reconstructing a signal can be greatly reduced if it is sparse in a known discrete basis, yet many real-world signals are sparse in a continuous dictionary. One example is the spectrally-sparse signal, which is composed of a small number of spectral atoms with arbitrary frequencies on the unit interval. In this paper we study the problem of line spectrum denoising and estimation with an ensemble of spectrally-sparse signals composed of the same set of continuous-valued frequencies from their partial and noisy observations. Two approaches are developed based on atomic norm minimization and structured covariance estimation, both of which can be solved efficiently via semidefinite programming. The first approach aims to estimate and denoise the set of signals from their partial and noisy observations via atomic norm minimization, and recover the frequencies via examining the dual polynomial of the convex program. We characterize the optimality condition of the proposed algorithm and derive the expected convergence rate for denoising, demonstrating the benefit of including multiple measurement vectors. The second approach aims to recover the population covariance matrix from the partially observed sample covariance matrix by motivating its low-rank Toeplitz structure without recovering the signal ensemble. Performance guarantee is derived with a finite number of measurement vectors. The frequencies can be recovered via conventional spectrum estimation methods such as MUSIC from the estimated covariance matrix. Finally, numerical examples are provided to validate the favorable performance of the proposed algorithms, with comparisons against several existing approaches.Comment: 14 pages, 10 figure
    corecore