412 research outputs found

    Graph Optimization Approach to Range-based Localization

    Full text link
    In this paper, we propose a general graph optimization based framework for localization, which can accommodate different types of measurements with varying measurement time intervals. Special emphasis will be on range-based localization. Range and trajectory smoothness constraints are constructed in a position graph, then the robot trajectory over a sliding window is estimated by a graph based optimization algorithm. Moreover, convergence analysis of the algorithm is provided, and the effects of the number of iterations and window size in the optimization on the localization accuracy are analyzed. Extensive experiments on quadcopter under a variety of scenarios verify the effectiveness of the proposed algorithm and demonstrate a much higher localization accuracy than the existing range-based localization methods, especially in the altitude direction

    Terahertz Communications and Sensing for 6G and Beyond: A Comprehensive View

    Full text link
    The next-generation wireless technologies, commonly referred to as the sixth generation (6G), are envisioned to support extreme communications capacity and in particular disruption in the network sensing capabilities. The terahertz (THz) band is one potential enabler for those due to the enormous unused frequency bands and the high spatial resolution enabled by both short wavelengths and bandwidths. Different from earlier surveys, this paper presents a comprehensive treatment and technology survey on THz communications and sensing in terms of the advantages, applications, propagation characterization, channel modeling, measurement campaigns, antennas, transceiver devices, beamforming, networking, the integration of communications and sensing, and experimental testbeds. Starting from the motivation and use cases, we survey the development and historical perspective of THz communications and sensing with the anticipated 6G requirements. We explore the radio propagation, channel modeling, and measurements for THz band. The transceiver requirements, architectures, technological challenges, and approaches together with means to compensate for the high propagation losses by appropriate antenna and beamforming solutions. We survey also several system technologies required by or beneficial for THz systems. The synergistic design of sensing and communications is explored with depth. Practical trials, demonstrations, and experiments are also summarized. The paper gives a holistic view of the current state of the art and highlights the issues and challenges that are open for further research towards 6G.Comment: 55 pages, 10 figures, 8 tables, submitted to IEEE Communications Surveys & Tutorial

    High-precision UWB based localisation for UAV in extremely confined environments

    Get PDF
    In this paper, a high-precision ultra-wideband (UWB) based unmanned aerial vehicle (UAV) localisation approach is proposed for applications in extremely confined environments. It is motivated by the emerging demand on autonomous inspection in such environments that are hard or impossible for humans to access. Instead of the traditional localisation techniques such as global positioning system (GPS), vision based or other localisation techniques, the UWB based localisation technique is adopted for precise UAV positioning due to its high accuracy, implementation simplicity and suitability in such environments. To avoid the requirement on strict synchronisation between sensor nodes and provide decimetre-level accuracy, the proposed algorithm combined the two-way time-of-flight (TW-TOF) localisation scheme with the maximum likelihood estimation (MLE) method. This differs from applications in other environments, the number and deployment area of anchor nodes are highly restricted in such environments. Therefore, an in-depth investigation for the anchor deployment strategies is presented to find the most suitable geometry configurations with accurate and robust performance. Finally, extensive simulations, static experiments and flight tests have been conducted to validate the localisation performance under different deployment strategies. The experiments show that average localisation error and standard deviation (STD) under 0.2 m and 0.07 m are obtainable by using our proposed approach under three different geometry configurations of anchor nodes. This is suitable for different applications in extremely confined environments

    Localization in GPS denied environment

    Get PDF
    No abstract available

    Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Algorithms for propagation-aware underwater ranging and localization

    Get PDF
    Mención Internacional en el título de doctorWhile oceans occupy most of our planet, their exploration and conservation are one of the crucial research problems of modern time. Underwater localization stands among the key issues on the way to the proper inspection and monitoring of this significant part of our world. In this thesis, we investigate and tackle different challenges related to underwater ranging and localization. In particular, we focus on algorithms that consider underwater acoustic channel properties. This group of algorithms utilizes additional information about the environment and its impact on acoustic signal propagation, in order to improve the accuracy of location estimates, or to achieve a reduced complexity, or a reduced amount of resources (e.g., anchor nodes) compared to traditional algorithms. First, we tackle the problem of passive range estimation using the differences in the times of arrival of multipath replicas of a transmitted acoustic signal. This is a costand energy- effective algorithm that can be used for the localization of autonomous underwater vehicles (AUVs), and utilizes information about signal propagation. We study the accuracy of this method in the simplified case of constant sound speed profile (SSP) and compare it to a more realistic case with various non-constant SSP. We also propose an auxiliary quantity called effective sound speed. This quantity, when modeling acoustic propagation via ray models, takes into account the difference between rectilinear and non-rectilinear sound ray paths. According to our evaluation, this offers improved range estimation results with respect to standard algorithms that consider the actual value of the speed of sound. We then propose an algorithm suitable for the non-invasive tracking of AUVs or vocalizing marine animals, using only a single receiver. This algorithm evaluates the underwater acoustic channel impulse response differences induced by a diverse sea bottom profile, and proposes a computationally- and energy-efficient solution for passive localization. Finally, we propose another algorithm to solve the issue of 3D acoustic localization and tracking of marine fauna. To reach the expected degree of accuracy, more sensors are often required than are available in typical commercial off-the-shelf (COTS) phased arrays found, e.g., in ultra short baseline (USBL) systems. Direct combination of multiple COTS arrays may be constrained by array body elements, and lead to breaking the optimal array element spacing, or the desired array layout. Thus, the application of state-of-the-art direction of arrival (DoA) estimation algorithms may not be possible. We propose a solution for passive 3D localization and tracking using a wideband acoustic array of arbitrary shape, and validate the algorithm in multiple experiments, involving both active and passive targets.Part of the research in this thesis has been supported by the EU H2020 program under project SYMBIOSIS (G.A. no. 773753).This work has been supported by IMDEA Networks InstitutePrograma de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Paul Daniel Mitchell.- Secretario: Antonio Fernández Anta.- Vocal: Santiago Zazo Bell

    Ultra-Wideband Trained Artificial Neural Networks for Bluetooth Proximity Detection in Small Crowded Areas

    Get PDF
    Estimating the distance between indoor users is increasingly important in unexpected ways. One specific example is the need for electronic contact tracing demonstrated during the recent global pandemic. Smartphones are now routinely equipped with Bluetooth Low Energy radios, among other sensors, and these can be used for proximity detection based on received signal strength that is subject to errors due to poor modelling of the indoor propagation environment. Some high-end smartphones have now also been equipped with ultra-wideband ranging radios that provide a much more precise range measurement. This thesis demonstrates the concept of using a limited number of UWB-equipped smartphones to gather data to train Artificial Neural Networks (ANN) to improve short-range distance estimation among Bluetooth users. The trained RSSI to range model can be used for proximity determination by other Bluetooth users in small, crowded areas. Two ANN algorithms were trained using RSSI measurements from three BLE advertising channels and UWB range as ground truth and training data. The initial training and testing were conducted in a semi-empty office laboratory with 2130 observations. The RF model used 1917 samples (90% of data) for training and 213 samples (10%) for testing, while the CNN method used 1704 samples (80% of data) for training and 426 samples (20%) for evaluation. The trained neural network models were tested in two other office environments under different user conditions. The results indicate that the ANN models can estimate proximity in a new environment without further training with a mean error of less than 1.2 metres, within a range of up to 6 metres at line-of-sight (LOS). In highly constrained non-line-of-sight (NLOS) areas in the first office room, the proposed models provided proximity accuracy better than 2.9 metres. Furthermore, during testing across two adjacent office environments, each containing a single BLE device with complex furniture arrangements, the ANN models showed the proximity between the BLE devices with an error of less than 2-3 metres
    • …
    corecore