46 research outputs found

    Direction-of-arrival estimation with conventional co-prime arrays using deep learning-based probablistic Bayesian neural networks

    Full text link
    The paper investigates the direction-of-arrival (DOA) estimation of narrow band signals with conventional co-prime arrays by using probabilistic Bayesian neural networks (PBNN). A super resolution DOA estimation method based on Bayesian neural networks and a spatially overcomplete array output formulation overcomes the pre-assumption dependencies of the model-driven DOA estimation methods. The proposed DOA estimation method utilizes a PBNN model to capture both data and model uncertainty. The developed PBNN model is trained to do the mapping from the pseudo-spectrum to the super resolution spectrum. This learning-based method enhances the generalization of untrained scenarios, and it provides robustness to non-ideal conditions, e.g., small angle separation, data scarcity, and imperfect arrays, etc. Simulation results demonstrate the loss curves of the PBNN model and deterministic model. Simulations are carried out to validate the performance of PBNN model compared to a deterministic model of conventional neural networks (CNN).Comment: 7-page

    A review of closed-form Cramér-Rao Bounds for DOA estimation in the presence of Gaussian noise under a unified framework

    Get PDF
    The Cramér-Rao Bound (CRB) for direction of arrival (DOA) estimation has been extensively studied over the past four decades, with a plethora of CRB expressions reported for various parametric models. In the literature, there are different methods to derive a closed-form CRB expression, but many derivations tend to involve intricate matrix manipulations which appear difficult to understand. Starting from the Slepian-Bangs formula and following the simplest derivation approach, this paper reviews a number of closed-form Gaussian CRB expressions for the DOA parameter under a unified framework, based on which all the specific CRB presentations can be derived concisely. The results cover three scenarios: narrowband complex circular signals, narrowband complex noncircular signals, and wideband signals. Three signal models are considered: the deterministic model, the stochastic Gaussian model, and the stochastic Gaussian model with the a priori knowledge that the sources are spatially uncorrelated. Moreover, three Gaussian noise models distinguished by the structure of the noise covariance matrix are concerned: spatially uncorrelated noise with unknown either identical or distinct variances at different sensors, and arbitrary unknown noise. In each scenario, a unified framework for the DOA-related block of the deterministic/stochastic CRB is developed, which encompasses one class of closed-form deterministic CRB expressions and two classes of stochastic ones under the three noise models. Comparisons among different CRBs across classes and scenarios are presented, yielding a series of equalities and inequalities which reflect the benchmark for the estimation efficiency under various situations. Furthermore, validity of all CRB expressions are examined, with some specific results for linear arrays provided, leading to several upper bounds on the number of resolvable Gaussian sources in the underdetermined case

    Theory and Algorithms for Reliable Multimodal Data Analysis, Machine Learning, and Signal Processing

    Get PDF
    Modern engineering systems collect large volumes of data measurements across diverse sensing modalities. These measurements can naturally be arranged in higher-order arrays of scalars which are commonly referred to as tensors. Tucker decomposition (TD) is a standard method for tensor analysis with applications in diverse fields of science and engineering. Despite its success, TD exhibits severe sensitivity against outliers —i.e., heavily corrupted entries that appear sporadically in modern datasets. We study L1-norm TD (L1-TD), a reformulation of TD that promotes robustness. For 3-way tensors, we show, for the first time, that L1-TD admits an exact solution via combinatorial optimization and present algorithms for its solution. We propose two novel algorithmic frameworks for approximating the exact solution to L1-TD, for general N-way tensors. We propose a novel algorithm for dynamic L1-TD —i.e., efficient and joint analysis of streaming tensors. Principal-Component Analysis (PCA) (a special case of TD) is also outlier responsive. We consider Lp-quasinorm PCA (Lp-PCA) for

    Statistical Performance Analysis of Sparse Linear Arrays

    Get PDF
    Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the asymptotic performance of the MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness of sparse linear arrays in the presence of array imperfections. Based on our analytical results, we also propose robust direction-finding algorithms for use when data are missing. We begin by analyzing the performance of two commonly used coarray-based MUSIC direction estimators. Because the coarray model is used, classical derivations no longer apply. By using an alternative eigenvector perturbation analysis approach, we derive a closed-form expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression is computationally efficient compared with the alternative of Monte Carlo simulations. Using this expression, we show that when the source number exceeds the sensor number, the MSE remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding theoretically explains the unusual saturation behavior of coarray-based MUSIC estimators that had been observed in previous studies. We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays under the assumption that the sources are uncorrelated. We show that, unlike the classical stochastic CRB, our CRB is applicable even if there are more sources than the number of sensors. We also show that, in such a case, this CRB remains strictly positive definite as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on the variance of unbiased DOA estimators in the underdetermined case. We establish the connection between our CRB and the classical stochastic CRB and show that they are asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We investigate the behavior of our CRB for co-prime and nested arrays with a large number of sensors, characterizing the trade-off between the number of spatial samples and the number of temporal samples. Our analytical results on the CRB will benefit future research on optimal sparse array designs. We further analyze the performance of sparse linear arrays by considering sensor location errors. We first introduce the deterministic error model. Based on this model, we derive a closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic sensor location errors introduce a constant estimation bias that cannot be mitigated by only increasing the SNR. Our analytical expression also provides a sensitivity measure against sensor location errors for sparse linear arrays. We next extend our derivations to the stochastic error model and analyze the Gaussian case. We also derive the CRB for joint estimation of DOA parameters and deterministic sensor location errors. We show that this CRB is applicable even if there are more sources than the number of sensors. Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the difference coarray structure, we introduce three algorithms to construct an augmented covariance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented covariance matrix, we are able to resolve more sources than sensors. Our method utilizes information from all snapshots and shows improved estimation performance over traditional DOA estimators
    corecore