15,620 research outputs found

    Statistical Performance Analysis of Sparse Linear Arrays

    Get PDF
    Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the asymptotic performance of the MUtiple SIgnal Classification (MUSIC) algorithm utilizing sparse linear arrays, (ii) derive and analyze performance bounds for sparse linear arrays, and (iii) investigate the robustness of sparse linear arrays in the presence of array imperfections. Based on our analytical results, we also propose robust direction-finding algorithms for use when data are missing. We begin by analyzing the performance of two commonly used coarray-based MUSIC direction estimators. Because the coarray model is used, classical derivations no longer apply. By using an alternative eigenvector perturbation analysis approach, we derive a closed-form expression of the asymptotic mean-squared error (MSE) of both estimators. Our expression is computationally efficient compared with the alternative of Monte Carlo simulations. Using this expression, we show that when the source number exceeds the sensor number, the MSE remains strictly positive as the signal-to-noise ratio (SNR) approaches infinity. This finding theoretically explains the unusual saturation behavior of coarray-based MUSIC estimators that had been observed in previous studies. We next derive and analyze the Cramér-Rao bound (CRB) for general sparse linear arrays under the assumption that the sources are uncorrelated. We show that, unlike the classical stochastic CRB, our CRB is applicable even if there are more sources than the number of sensors. We also show that, in such a case, this CRB remains strictly positive definite as the SNR approaches infinity. This unusual behavior imposes a strict lower bound on the variance of unbiased DOA estimators in the underdetermined case. We establish the connection between our CRB and the classical stochastic CRB and show that they are asymptotically equal when the sources are uncorrelated and the SNR is sufficiently high. We investigate the behavior of our CRB for co-prime and nested arrays with a large number of sensors, characterizing the trade-off between the number of spatial samples and the number of temporal samples. Our analytical results on the CRB will benefit future research on optimal sparse array designs. We further analyze the performance of sparse linear arrays by considering sensor location errors. We first introduce the deterministic error model. Based on this model, we derive a closed-form expression of the asymptotic MSE of a commonly used coarray-based MUSIC estimator, the spatial-smoothing based MUSIC (SS-MUSIC). We show that deterministic sensor location errors introduce a constant estimation bias that cannot be mitigated by only increasing the SNR. Our analytical expression also provides a sensitivity measure against sensor location errors for sparse linear arrays. We next extend our derivations to the stochastic error model and analyze the Gaussian case. We also derive the CRB for joint estimation of DOA parameters and deterministic sensor location errors. We show that this CRB is applicable even if there are more sources than the number of sensors. Lastly, we develop robust DOA estimators for cases with missing data. By exploiting the difference coarray structure, we introduce three algorithms to construct an augmented covariance matrix with enhanced degrees of freedom. By applying MUSIC to this augmented covariance matrix, we are able to resolve more sources than sensors. Our method utilizes information from all snapshots and shows improved estimation performance over traditional DOA estimators

    The Parallelism Motifs of Genomic Data Analysis

    Get PDF
    Genomic data sets are growing dramatically as the cost of sequencing continues to decline and small sequencing devices become available. Enormous community databases store and share this data with the research community, but some of these genomic data analysis problems require large scale computational platforms to meet both the memory and computational requirements. These applications differ from scientific simulations that dominate the workload on high end parallel systems today and place different requirements on programming support, software libraries, and parallel architectural design. For example, they involve irregular communication patterns such as asynchronous updates to shared data structures. We consider several problems in high performance genomics analysis, including alignment, profiling, clustering, and assembly for both single genomes and metagenomes. We identify some of the common computational patterns or motifs that help inform parallelization strategies and compare our motifs to some of the established lists, arguing that at least two key patterns, sorting and hashing, are missing

    Scalable Tensor Factorizations for Incomplete Data

    Full text link
    The problem of incomplete data - i.e., data with missing or unknown values - in multi-way arrays is ubiquitous in biomedical signal processing, network traffic analysis, bibliometrics, social network analysis, chemometrics, computer vision, communication networks, etc. We consider the problem of how to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP). In the presence of missing data, CP can be formulated as a weighted least squares problem that models only the known entries. We develop an algorithm called CP-WOPT (CP Weighted OPTimization) that uses a first-order optimization approach to solve the weighted least squares problem. Based on extensive numerical experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 x 1000 x 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP-WOPT on two real-world applications: a novel EEG (electroencephalogram) application where missing data is frequently encountered due to disconnections of electrodes and the problem of modeling computer network traffic where data may be absent due to the expense of the data collection process

    A Compact Formulation for the â„“2,1\ell_{2,1} Mixed-Norm Minimization Problem

    Full text link
    Parameter estimation from multiple measurement vectors (MMVs) is a fundamental problem in many signal processing applications, e.g., spectral analysis and direction-of- arrival estimation. Recently, this problem has been address using prior information in form of a jointly sparse signal structure. A prominent approach for exploiting joint sparsity considers mixed-norm minimization in which, however, the problem size grows with the number of measurements and the desired resolution, respectively. In this work we derive an equivalent, compact reformulation of the â„“2,1\ell_{2,1} mixed-norm minimization problem which provides new insights on the relation between different existing approaches for jointly sparse signal reconstruction. The reformulation builds upon a compact parameterization, which models the row-norms of the sparse signal representation as parameters of interest, resulting in a significant reduction of the MMV problem size. Given the sparse vector of row-norms, the jointly sparse signal can be computed from the MMVs in closed form. For the special case of uniform linear sampling, we present an extension of the compact formulation for gridless parameter estimation by means of semidefinite programming. Furthermore, we derive in this case from our compact problem formulation the exact equivalence between the â„“2,1\ell_{2,1} mixed-norm minimization and the atomic-norm minimization. Additionally, for the case of irregular sampling or a large number of samples, we present a low complexity, grid-based implementation based on the coordinate descent method
    • …
    corecore