195 research outputs found

    An update on the Hirsch conjecture

    Get PDF
    The Hirsch conjecture was posed in 1957 in a letter from Warren M. Hirsch to George Dantzig. It states that the graph of a d-dimensional polytope with n facets cannot have diameter greater than n - d. Despite being one of the most fundamental, basic and old problems in polytope theory, what we know is quite scarce. Most notably, no polynomial upper bound is known for the diameters that are conjectured to be linear. In contrast, very few polytopes are known where the bound ndn-d is attained. This paper collects known results and remarks both on the positive and on the negative side of the conjecture. Some proofs are included, but only those that we hope are accessible to a general mathematical audience without introducing too many technicalities.Comment: 28 pages, 6 figures. Many proofs have been taken out from version 2 and put into the appendix arXiv:0912.423

    Practical Volume Estimation by a New Annealing Schedule for Cooling Convex Bodies

    Full text link
    We study the problem of estimating the volume of convex polytopes, focusing on H- and V-polytopes, as well as zonotopes. Although a lot of effort is devoted to practical algorithms for H-polytopes there is no such method for the latter two representations. We propose a new, practical algorithm for all representations, which is faster than existing methods. It relies on Hit-and-Run sampling, and combines a new simulated annealing method with the Multiphase Monte Carlo (MMC) approach. Our method introduces the following key features to make it adaptive: (a) It defines a sequence of convex bodies in MMC by introducing a new annealing schedule, whose length is shorter than in previous methods with high probability, and the need of computing an enclosing and an inscribed ball is removed; (b) It exploits statistical properties in rejection-sampling and proposes a better empirical convergence criterion for specifying each step; (c) For zonotopes, it may use a sequence of convex bodies for MMC different than balls, where the chosen body adapts to the input. We offer an open-source, optimized C++ implementation, and analyze its performance to show that it outperforms state-of-the-art software for H-polytopes by Cousins-Vempala (2016) and Emiris-Fisikopoulos (2018), while it undertakes volume computations that were intractable until now, as it is the first polynomial-time, practical method for V-polytopes and zonotopes that scales to high dimensions (currently 100). We further focus on zonotopes, and characterize them by their order (number of generators over dimension), because this largely determines sampling complexity. We analyze a related application, where we evaluate methods of zonotope approximation in engineering.Comment: 20 pages, 12 figures, 3 table

    Three Puzzles on Mathematics, Computation, and Games

    Full text link
    In this lecture I will talk about three mathematical puzzles involving mathematics and computation that have preoccupied me over the years. The first puzzle is to understand the amazing success of the simplex algorithm for linear programming. The second puzzle is about errors made when votes are counted during elections. The third puzzle is: are quantum computers possible?Comment: ICM 2018 plenary lecture, Rio de Janeiro, 36 pages, 7 Figure

    Graphs of Transportation Polytopes

    Get PDF
    This paper discusses properties of the graphs of 2-way and 3-way transportation polytopes, in particular, their possible numbers of vertices and their diameters. Our main results include a quadratic bound on the diameter of axial 3-way transportation polytopes and a catalogue of non-degenerate transportation polytopes of small sizes. The catalogue disproves five conjectures about these polyhedra stated in the monograph by Yemelichev et al. (1984). It also allowed us to discover some new results. For example, we prove that the number of vertices of an m×nm\times n transportation polytope is a multiple of the greatest common divisor of mm and nn.Comment: 29 pages, 7 figures. Final version. Improvements to the exposition of several lemmas and the upper bound in Theorem 1.1 is improved by a factor of tw

    Level Eulerian Posets

    Full text link
    The notion of level posets is introduced. This class of infinite posets has the property that between every two adjacent ranks the same bipartite graph occurs. When the adjacency matrix is indecomposable, we determine the length of the longest interval one needs to check to verify Eulerianness. Furthermore, we show that every level Eulerian poset associated to an indecomposable matrix has even order. A condition for verifying shellability is introduced and is automated using the algebra of walks. Applying the Skolem--Mahler--Lech theorem, the ab{\bf ab}-series of a level poset is shown to be a rational generating function in the non-commutative variables a{\bf a} and b{\bf b}. In the case the poset is also Eulerian, the analogous result holds for the cd{\bf cd}-series. Using coalgebraic techniques a method is developed to recognize the cd{\bf cd}-series matrix of a level Eulerian poset
    corecore