6,680 research outputs found

    Sensorsimulator: simulation framework for sensor networks

    Get PDF
    Wireless sensor networks have the potential to become significant subsystems of engineering applications. Before relegating important and safety-critical tasks to such subsystems, it is necessary to understand the dynamic behavior of these subsystems in simulation environments. There is an urgent need to develop a simulation platform that is useful to explore both the networking issues and the distributed computing aspects of wireless sensor networks. Current approaches to simulating wireless sensor networks largely focus on the networking issues. These approaches use well-known network simulation tools that are often difficult to extend to explore distributed computing issues. Discrete-event simulation is a trusted platform for modeling and simulation of a variety of systems. SensorSimulator is a discreet event simulation framework for sensor networks built over OMNeT++. It is a customizable and an extensible framework for wireless sensor network simulation. This framework allows the user to debug and test software for distributed sensor networks independent of hardware constraints. The extensibility of SensorSimulator allows developers and researchers to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The framework provides modules for various layers. Applications can be implemented by using these framework modules by sub classing the framework classes and customizing their behavior at various network layers. We validate and demonstrate the usability of these capabilities through analyzing the simulation results of Directed Diffusion and GEAR. A comparison study of performance of SensorSimulator v/s NS2 for various network densities and traffic have shown that SensorSimulator is able to achieve higher scalability and requires less time for execution

    Katakan tidak pada rasuah

    Get PDF
    Isu atau masalah rasuah menjadi topik utama sama ada di peringkat antarabangsa mahupun di peringkat dalam negara. Pertubuhan Bangsa- bangsa Bersatu menegaskan komitmen komuniti antarabangsa bertegas untuk mencegah dan mengawal rasuah melalui buku bertajuk United Nations Convention against Corruption. Hal yang sama berlaku di Malaysia. Melalui pernyataan visi oleh mantan Perdana Menteri Malaysia, Tun Dr. Mahathir bin Mohamed memberikan indikasi bahawa kerajaan Malaysia komited untuk mencapai aspirasi agar Malaysia dikenali kerana integriti dan bukannya rasuah. Justeru, tujuan penulisan bab ini adalah untuk membincangkan rasuah dari beberapa sudut termasuk perbincangan dari sudut agama Islam, faktor-faktor berlakunya gejala rasuah, dan usaha-usaha yang dijalankan di Malaysia untuk membanteras gejala rasuah. Perkara ini penting bagi mengenalpasti penjawat awam menanamkan keyakinan dalam melaksanakan tanggungjawab dengan menghindari diri daripada rasuah agar mereka sentiasa peka mengutamakan kepentingan awam

    Proactive Highly Ambulatory Sensor Routing (PHASeR) protocol for mobile wireless sensor networks

    Get PDF
    This paper presents a novel multihop routing protocol for mobile wireless sensor networks called PHASeR (Proactive Highly Ambulatory Sensor Routing). The proposed protocol uses a simple hop-count metric to enable the dynamic and robust routing of data towards the sink in mobile environments. It is motivated by the application of radiation mapping by unmanned vehicles, which requires the reliable and timely delivery of regular measurements to the sink. PHASeR maintains a gradient metric in mobile environments by using a global TDMA MAC layer. It also uses the technique of blind forwarding to pass messages through the network in a multipath manner. PHASeR is analysed mathematically based on packet delivery ratio, average packet delay, throughput and overhead. It is then simulated with varying mobility, scalability and traffic loads. The protocol gives good results over all measures, which suggests that it may also be suitable for a wider array of emerging applications

    Detection techniques of selective forwarding attacks in wireless sensor networks: a survey

    Full text link
    The wireless sensor network has become a hot research area due its wide range of application in military and civilian domain, but as it uses wireless media for communication these are easily prone to security attacks. There are number of attacks on wireless sensor networks like black hole attack, sink hole attack, Sybil attack, selective forwarding attacks etc. in this paper we will concentrate on selective forwarding attacks In selective forwarding attacks, malicious nodes behave like normal nodes and selectively drop packets. The selection of dropping nodes may be random. Identifying such attacks is very difficult and sometimes impossible. In this paper we have listed up some detection techniques, which have been proposed by different researcher in recent years, there we also have tabular representation of qualitative analysis of detection techniquesComment: 6 Page

    Simulation study of routing protocols in wireless sensor networks

    Get PDF
    Wireless sensor networks, a distributed network of sensor nodes perform critical tasks in many application areas such as target tracking in military applications, detection of catastrophic events, environment monitoring, health applications etc. The routing protocols developed for these distributed sensor networks need to be energy efficient and scalable. To create a better understanding of the performance of various routing protocols proposed it is very important to perform a detailed analysis of them. Network simulators enable us to study the performance and behavior of these protocols on various network topologies. Many Sensor Network frameworks were developed to explore both the networking issues and the distributed computing aspects of wireless sensor networks. The current work of simulation study of routing protocols is done on SensorSimulator, a discrete event simulation framework developed at Sensor Networks Research Laboratory, LSU and on a popular event driven network simulator ns2 developed at UC Berkeley. SensorSimulator is a discrete event simulation framework for sensor networks built over OMNeT++ (Objective Modular Network Test-bed in C++). This framework allows the user to debug and test software for distributed sensor networks. SensorSimulator allows developers and researchers in the area of Sensor Networks to investigate topological, phenomenological, networking, robustness and scaling issues, to explore arbitrary algorithms for distributed sensors, and to defeat those algorithms through simulated failure. The framework has modules for all the layers of a Sensor Network Protocol stack. This thesis is focused on the simulation and performance evaluation of various routing protocols on SensorSimulator and ns2. The performance of the simulator is validated with a comparative study of Directed Diffusion Routing Protocol on both ns2 and SensorSimulator. Then the simulations are done to evaluate the performance of Optimized Broadcast Protocols for Sensor Networks, Efficient Coordination Protocol for Wireless Sensor Networks on SensorSimulator. Also a performance study of Random Asynchronous Wakeup protocol for Sensor Networks is done on ns2
    corecore